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ABOUT DATA AND REALITY 
 
 

First published over twenty years ago, this little classic 
addresses timeless questions about how we as human beings 
perceive and process information about the world we operate in, 
and how we struggle to impose that view on our data processing 
machines. The concerns at this level are the same whether we 
use hierarchical, relational, or object-oriented information 
structures; whether we process data via punched-card machines 
or interactive graphic interfaces; whether we correspond by 
paper mail or e-mail; whether we shop from paper-based 
catalogs or the web. No matter what the technology, these 
underlying issues have to be understood. 

You can read this book for insights into the basis of 
computer data processing. You can also read it for insights into 
the way we perceive reality, and the constructs and tactics we use 
to cope with complexity, ambiguity, incomplete information, 
mismatched viewpoints, and conflicting objectives. 

This new edition preserves the original content with minor 
cleanup and a new preface. The format, though, has been 
thoroughly modernized. That ugly typewriter font is gone! It’s 
now a pleasure for the eyes as well as the mind. And it’s still as 
relevant as ever. 





vii 

What they’ve said about Data and Reality… 
 
 

An excellent, philosophical discussion of the problems 
inherent in describing the real world. There is nothing really 
similar to this work. I think that all data base researchers should 
read this document. It might also be assigned as supplementary 
reading in general graduate and undergraduate courses in data 
base systems. 

−Mike Senko (1978) 
 

I expect the book to be one of the most frequently quoted 
ones for the next few years. It is unique in being an almost 
exhaustive, condensed rendition of the typical problems 
encountered. The most striking strong point is its penetration into 
major data base technology headaches… Many well chosen 
examples and the lucid style make it easy to read. 

−Reiner Durcholz (1978) 
 

…highly recommended and even required reading for all DP 
people… 

−G.M. Nijssen (1978) 
 

Kent has produced a rather remarkable and highly readable 
short work… the most important things he has to say are 
philosophical and go right to the heart of the key concepts that 
must be understood if a system is to be “successful” (whatever 
that may mean!)…This is a serious book but not a heavy one. 
Kent writes easily and without hiding behind the semantics of 
the data base specialists. The ideas are presented in a 
straightforward manner with no attempt to preach. 

−Datamation, March 1979 
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This excellent study of the problems inherent in describing 
the real world is unique in (1) being an almost exhaustive, 
condensed rendition of the typical problems encountered, (2) not 
offering an own solution as remedy for all evils, and (3) 
penetrating into the mists of conceptual ambiguity… This book 
is of important value to all those in the field of data bases and 
information systems who are concerned with developing a 
deeper understanding of this matter. It is of equal importance to 
the systems analyst, to the data base designer, and to the database 
system designer. 

−Current Engineering Practice, July 1979 
 

Data and Reality illustrates extensively the pitfalls of any 
simplistic attempts to capture reality as data in the sense of 
today’s database systems. The approach taken by the author is 
one which very logically and carefully delineates the facets of 
reality being represented in an information system, and also 
describes the data processing models used in such systems. The 
linguistic, semantic, and philosophical problems of describing 
reality are comprehensively examined… The depth of discussion 
of these concepts, as they impact on information systems, is not 
likely to be found elsewhere.… the value of this book resides in 
its critical, probing approach to the difficulties of modeling 
reality in typical information systems… it is very well written 
and should prove both enjoyable and enlightening to a careful 
reader. 

−ACM Computing Reviews, August 1980 
 

By page eight one has been exposed to an incredible number 
of philosophical ideas, all cast as concrete data-representation 
problems… this is basically a book that poses problems and 
exposes contradictions… A very stimulating read. 

−Quantitative Sociology Newsletter, Spring 1981 



ix 

Kent attacks the pseudo-exactness of existing data models in 
a very neat and clear (and often humorous) manner… This book 
is for everyone who thinks about or works on data files and who 
wants to understand the reasons for his disenchantment. 

−European Journal of Operations Research, November 1981 
 
I am using Data and Reality as research material for my 

current project. It is on my desk right now. 
−Joe Celko, 1998 

 
The book is still quoted quite often and has a message even − 

or especially − for today’s jaded information scientists. 
−Prof. Dr. Robert Meersman, Vrije Universiteit Brussel (1998) 

 
Your book focuses attention on many issues that are still, 

embarrassingly, not being dealt with in our formalized 
information systems. It provides an important reference point not 
only in identifying these problems, but in pointing out origins 
and the long-standing practice of simply ignoring them. When I 
reopened your book… I found lots of issues that seem as fresh as 
ever. 

−Roger Burkhart, John Deere (1998) 
 

A small number of computing and information management 
books are of foundational nature, not oriented towards a 
particular technology, methodology or tool. Data and Reality is 
such a book. The concepts and approach described there are as 
valid now as they were in 1978, and are still often ignored 
resulting in systems that are not what we want them to be. Doing 
better than that requires Data and Reality to be an essential 
component of our intellectual foundation. 

−Haim Kilov, Genesis Development Corporation (1999) 



x 

I remember my first exposure to the work of Edward Tufte. 
The richness of detail that could be presented simply was almost 
a physical shock. Were it not for Bill Kent I might have forgotten 
that the data represented by that richness was only a 
representation of reality, and not the reality itself. In a world 
which reinvents the Perfect Semantic Representation Language 
to End All Semantic Representation Languages every ten years 
or so, it is a pleasure to have Bill’s calming influence in print in 
the form of Data and Reality. 

−Richard Mark Soley, Ph.D., Chairman and CEO, 
Object Management Group, Inc. (1999) 
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Preface to the Second Edition 
 

 
espite critical acclaim, outside of a small circle of 
enthusiastic readers this book has been a sleeper for 
over twenty years. Publishers have recently offered to 

market and distribute it with more vigor if I would provide a new 
revised edition, but I’ve resisted. Laziness might be seen as the 
excuse, but I’m beginning to realize there’s a better reason. 

A new revised edition would miss the point of the book. 
Many texts and reference works are available to keep you on the 
leading edge of data processing technology. That’s not what this 
book is about. This book addresses timeless questions about how 
we as human beings perceive and process information about the 
world we operate in, and how we struggle to impose that view on 
our data processing machines. The concerns at this level are the 
same whether we use hierarchical, relational, or object-oriented 
information structures; whether we process data via punched-
card machines or interactive graphic interfaces; whether we 
correspond by paper mail or e-mail; whether we shop from 
paper-based catalogs or the web. No matter what the technology, 
these underlying issues have to be understood. Failure to 
address these issues imperils the success of your application 
regardless of the tools you are using. 

That’s not to say the technical matrix of the book is obsolete 
or antiquated. The data record is still a fundamental component 
of the way we organize computer information. Sections of the 
book exploring new models including behavioral elements are 
precursors of object orientation. 

The scope of the book extends beyond computer technology. 
The questions aren’t so much about how we process data as 
about how we perceive reality, about the constructs and tactics 
we use to cope with complexity, ambiguity, incomplete 
information, mismatched viewpoints, and conflicting objectives. 

You can read the book for those reasons, or for other reasons 
as well. A few years back, almost twenty years after the book was 
published, I began to notice that the book is also about 
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something else, something far more personal. The scope of the 
book doesn’t only extend beyond computer data processing into 
the realm of how we perceive the world. It also extends into our 
inner domain. I’ve come to recognize that it touches on issues in 
my own inner life that I, like most of us to some degree or other, 
have been grappling with for decades. 

Consider the key topics: existence, identity, attributes, 
relationships, behavior, and modeling. 

Existence: Is cogito ergo sum sufficient? To what extent am I 
really present and engaged in the process of life around me? 
How real are the physical things I experience? To what extent do 
I exist in some spiritual realm independent of the physical 
context? 

Identity: The old “Who am I?” bit. What is the true nature of 
the kind of person I am? What sorts of needs, goals, outlooks 
define who I really am? 

Attributes: What kind of person am I? What are my values, 
my assets, my limitations? 

Relationships: This is the core of it all. What is the quality of 
my interaction with parents, lovers, spouses, children, siblings, 
friends, colleagues, and other acquaintances? What are my 
connections with things material, social, spiritual, and 
otherwise? What are my needs here? What are the issues and 
problems? How can they be improved? 

Behavior: What should I plan to do in various situations? 
How? What might be the consequences, both intended and 
otherwise? What contingencies need to be anticipated? 

Modeling: How accurate and useful are the constructs I use 
to explain all these things? How effective are these kinds of 
explanations in helping me change what needs to be changed? 

This book certainly shouldn’t be classified in the social 
sciences, but it is remarkable to observe how technology issues 
can resonate as metaphors for our inner lives. This perspective 
seems to explain why I’ve engaged so intimately with these 
ideas, why I’ve argued so passionately about them at standards 
committee meetings and in the hallways at conferences. 

I repeat the invitation, made in the book’s original preface, 
to discover for yourself what you might think the book is about. 
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It just might be about you. But if that’s too much pop psychology 
for your comfort, if that’s too invasive of your personal space, 
then just read it for its insights into data processing and reality. 
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Preface 
 
 
A message to mapmakers: highways are not painted 

red, rivers don’t have county lines running down the 
middle, and you can’t see contour lines on a mountain. 
 

 
or some time now my work has concerned the 
representation of information in computers. The work has 
involved such things as file organizations, indexes, 

hierarchical structures, network structures, relational models, and 
so on. After a while it dawned on me that these are all just maps, 
being poor artificial approximations of some real underlying 
terrain. 

These structures give us useful ways to deal with 
information, but they don’t always fit naturally, and sometimes 
not at all. Like different kinds of maps, each kind of structure has 
its strengths and weaknesses, serving different purposes, and 
appealing to different people in different situations. Data 
structures are artificial formalisms. They differ from information 
in the same sense that grammars don’t describe the language we 
really use, and formal logical systems don’t describe the way we 
think. “The map is not the territory” [Hayakawa]. 

What is the territory really like? How can I describe it to 
you? Any description I give you is just another map. But we do 
need some language (and I mean natural language) in order to 
discuss this subject, and to articulate concepts. Such constructs 
as “entities”, “categories”, “names”, “relationships”, and 
“attributes” seem to be useful. They give us at least one way to 
organize our perceptions and discussions of information. In a 
sense, such terms represent the basis of my “data structure”, or 
“model”, for perceiving real information. Later chapters discuss 
these constructs and their central characteristics ⎯ especially the 
difficulties involved in trying to define or apply them precisely. 

Along the way, we implicitly suggest a hypothesis (by sheer 
weight of examples, rather than any kind of proof ⎯ such a 
hypothesis is beyond proof): there is probably no adequate 
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formal modeling system. Information in its “real” essence is 
probably too amorphous, too ambiguous, too subjective, too 
slippery and elusive, to ever be pinned down precisely by the 
objective and deterministic processes embodied in a computer. 
(At least in the conventional uses of computers as we see them 
today; future developments in artificial intelligence may endow 
these machines with more of our capacity to cope.) This follows 
a path pointed out by Zemanek, connecting data processing with 
certain philosophical observations about the real world, 
especially the aspects of human judgment on which semantics 
ultimately depend ([Zemanek 72]). 

In spite of such difficulties (and because I see no 
alternative), we also begin to explore the extent and manner in 
which such constructs can and have been incorporated into 
various data models. We are looking at real information, as it 
occurs in the interactions among people, but always with a view 
toward modeling that information in a computer based system. 
The questions are these: What is a useful way to perceive 
information for that purpose? What constructs are useful for 
organizing the way we think about information? Might those 
same constructs be employed in a computer based model of the 
information? How successfully are they reflected in current 
modeling systems? How badly oversimplified is the view of 
information in currently used data models? Are there limits to the 
effectiveness of any system of constructs for modeling 
information? 

In spite of my conjecture about the inherent limits of formal 
modeling, we do need models in order to go about our business 
of processing information. So, undaunted, I have assimilated 
some of my own ideas about a “good” modeling system, and 
these appear toward the end. 

Keep in mind that I am not talking about “information” in a 
very broad sense. I am not talking about very ambitious 
information systems. We are not in the domain of artificial 
intelligence, where the effort is to match the intellectual 
capabilities of the human mind (reasoning, inference, value 
judgments, etc.). We are not even trying to process prose text; we 
are not attempting to understand natural language, analyze 
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grammar, or retrieve information from documents. We are 
primarily concerned with that kind of information which is 
managed in most current files and databases. We are looking at 
information that occurs in large quantities, is permanently 
maintained, and has some simplistic structure and format to it. 
Examples include personnel files, bank records, and inventory 
records. 

Even this modest bit of territory offers ample opportunity for 
misunderstanding the semantics of the information being 
represented. 

Within these bounds, we focus on describing the information 
content of some system. The system involved might be one or 
more files, a database, a system catalog, a data dictionary, or 
perhaps something else. We are limiting ourselves to the 
information content of such systems, excluding such concerns 
as: 

 
• Real implementations, representation techniques, 

performance. 
• Manipulation and use of the data. 
• Work flow, transactions, scheduling, message handling. 
• Integrity, recovery, security. 
 
A caution to the lay reader in search of a tutorial: this book is 

not about data processing as it is. As obvious as these concepts 
may seem, they are not reflected in, or are just dimly understood 
in, the current state of data processing systems. “We do not, it 
seems, have a very clear and commonly agreed upon set of 
notions about data ⎯ either what they are, how they should be 
fed and cared for, or their relation to the design of programming 
languages and operating systems. This paper sketches a theory of 
data which may serve to clarify these questions. It is based on a 
number of old ideas and may, as a result, seem obvious. Be that 
as it may, some of these old ideas are not common currency in 
our field, either separately or in combination; it is hoped that 
rehashing them in a somewhat new form may prove to be at least 
suggestive” [Mealy]. That opening paragraph of a now classic 
paper, some ten years old, is still distressingly apt today. 
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There is a wonderful irony at work here. I may be trying to 
overcome misconceptions which people outside the computer 
business don’t have in the first place. Many readers will find 
little new in what I say about the nature of our perceptions of 
reality. Such readers may well react with “So what’s new?” To 
them, my point is that the computing community has largely lost 
sight of such truisms. Their relevance to the computing 
disciplines needs to be re-established. 

People in the data processing community have gotten used to 
viewing things in a highly simplistic way, dictated by the kind of 
tools they have at their disposal. And this may suggest another 
wonderful irony. People are awed by the sophistication and 
complexity of computers, and tend to assume that such things are 
beyond their comprehension. But that view is entirely 
backwards! The thing that makes computers so hard to deal with 
is not their complexity, but their utter simplicity. The first thing 
that ought to be explained to the general public is that a 
computer possesses incredibly little ordinary intelligence. The 
real mystique behind computers is how anybody can manage to 
get such elaborate behavior out of such a limited set of basic 
capabilities. The art of computer programming is somewhat like 
the art of getting an imbecile to play bridge or to fill out his tax 
returns by himself. It can be done, provided you know how to 
exploit the imbecile’s limited talents, and are willing to have 
enormous patience with his inability to make the most trivial 
common sense decisions on his own. Imagine, for example, that 
he only understood grammatically perfect sentences, and 
couldn’t make the slightest allowance for colloquialisms, or for 
the normal way people restart sentences in mid-speech, or for the 
trivial typographical errors which we correct so automatically 
that we don’t even see them. The first step toward understanding 
computers is an appreciation of their simplicity, not their 
complexity. 

Another thought, though: I may be going off in the wrong 
direction by focusing so much concern on computers and 
computer thinking. Many of the concerns about the semantics of 
data seem relevant to any record keeping facility, whether 
computerized or not. I wonder why the problems appear to be 
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aggravated in the environment of a computerized database. Is it 
sheer magnitude? Perhaps there is just a larger mass of people 
than before who need to achieve a common understanding of 
what the data means. Or is it the lost human element? Maybe all 
those conversations with secretaries and clerks, about where 
things are and what they mean, are more essential to the system 
than we’ve realized. Or is there some other explanation? 

The flow of the book generally alternates between two 
domains, the real world and computers. Chapter 1 is in the world 
of real information, exploring some enigmas in our concepts of 
“entities”. Chapter 2 briefly visits the realm of computers, 
dealing with some general characteristics of formally structured 
information systems. This gives us a general idea of the impact 
the two domains have on each other. Chapters 3 through 6 then 
address other aspects of real information. Chapters 7 through 11, 
dealing with data processing models, bring us back to the 
computer. We top it all off with a smattering of philosophical 
observations in Chapter 12. 

This has been an approximate characterization⎯one 
view⎯of what the rest of the book contains. Please read on to 
discover what you might think the book is about. 

 
* * * * 

 
I want to thank the people who took the time to comment on 

(and often contribute to) earlier versions of this material, 
including Marilyn Bohl, Ted Codd, Chris Date, Bob Engles, Bob 
Griffith, Roger Holliday, Lucy Lee, Len Levy, Bill McGee, Paula 
Newman, and Rich Seidner. George Kent, of the Political 
Science Dept. at the University of Hawaii, provided a valuable 
perspective from a vantage point outside of the computing 
profession. Karen Takle Quinn, our head librarian, was 
immensely helpful in tracking down many references. I thank 
Willem Dijkhuis of North Holland for his substantial 
encouragement in the publication of this book. 

And very special thanks go to my wife, Barbara, who helped 
make the book more readable, and who coped and sacrificed 
more than anyone else for this book. 
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1 Entities 
 
 

“Entities are a state of mind. No two people agree 
on what the real world view is.” [Metaxides] 

 
 
n information system (e.g., database) is a model of a 
small, finite subset of the real world. (More or less ⎯ 

we’ll come back to that later.) We expect certain 
correspondences between constructs inside the information 
system and in the real world. We expect to have one record in the 
employee file for each person employed by the company. If an 
employee works in a certain department, we expect to find that 
department’s number in that employee’s record. 

So, one of the first concepts we have is a correspondence 
between things inside the information system and things in the 
real world. Ideally, this would be a one-to-one correspondence, 
i.e., we could identify a single construct in the information 
system which represented a single thing in the real world. 

Even these simple expectations run into trouble. In the first 
place, it’s not so easy to pin down what construct in the 
information system will do the representing. It might be a record 
(whatever that means), or a part of one, or several of them, or a 
catalog entry, or a subject in a data dictionary, or .... For now 
let’s just call that thing a representative, and come back to that 
topic later. Let’s explore instead how well we really understand 
what it is that we want represented. 

As a schoolteacher might say, before we start writing data 
descriptions let’s pause a minute and get our thoughts in order. 
Before we go charging off to design or use a data structure, let’s 
think about the information we want to represent. Do we have a 
very clear idea of what that information is like? Do we have a 
good grasp of the semantic problems involved? 

Becoming an expert in data structures is like becoming an 
expert in sentence structure and grammar. It’s not of much value 
if the thoughts you want to express are all muddled. 

A 
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The information in the system is part of a communication 
process among people. There is a flow of ideas from mind to 
mind; there are translations along the way, from concept to 
natural languages to formal languages (constructs in the machine 
system) and back again. An observer of, or participant in, a 
certain process recognizes that a certain person has become 
employed by a certain department. The observer causes that fact 
to be recorded, perhaps in a database, where someone else can 
later interrogate that recorded fact to get certain ideas out of it. 
The resemblance between the extracted ideas and the ideas in the 
original observer’s mind does not depend only on the accuracy 
with which the messages are recorded and transmitted. It also 
depends heavily on the participants’ common understanding of 
the elementary references to “a certain person”, “a certain 
department”, and “is employed by”. 

 
1.1 One Thing 

 
What is “one thing”? 
That appears at first to be a trivial, irrelevant, irreverent, 

absurd question. It’s not. The question illustrates how deeply 
ambiguity and misunderstanding are ingrained in the way we 
think and talk. 

Consider those good old workhorse database examples, parts 
and warehouses. We normally assume a context in which each 
part has a part number and occurs in various quantities at various 
warehouses. Notice that: various quantities of one thing. Is it one 
or many? Obviously, the assumption here is that “part” means 
one kind of part, of which there may be many physical instances. 
(The same ambiguity shows up very often in natural usage, when 
we refer to two physical things as “the same thing” when we 
mean “the same kind”.) It is a perfectly valid and useful point of 
view in the context of, e.g., an inventory file: we have one 
representative (record) for each kind of thing, and speak loosely 
of all occurrences of the thing as collectively being one thing. 
(We could also approach this by saying that the representative is 
not meant to correspond to any physical object, but to the 
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abstracted idea of one kind of object. Nonetheless, we do use the 
term “part”, and not “kind of part”.) 

Now consider another application, a quality control 
application, also dealing with parts. In this context, “part” means 
one physical object; each part is subjected to certain tests, and 
the test data is maintained in a database separately for each part. 
There is now one representative in the information system for 
each physical object, many of which may have the same part 
number. 

In order to integrate the databases for the inventory and 
quality control applications, the people involved need to 
recognize that there are two different notions of “thing” 
associated with the concept of “part”, and the two views must be 
reconciled. They will have to work out a convention wherein the 
information system can deal with two kinds of representatives: 
one standing for a kind of part, another standing for one physical 
object. 

I hope you’re convinced now that we have to go to some 
depth to deal with the basic semantic problems of data 
description. 

We are dealing with a natural ambiguity of words, which we 
as human beings resolve in a largely automatic and unconscious 
way, because we understand the context in which the words are 
being used. When a data file exists to serve just one application, 
there is in effect just one context, and users implicitly understand 
that context; they automatically resolve ambiguities by 
interpreting words as appropriate for that context. But when files 
get integrated into a database serving multiple applications, that 
ambiguity-resolving mechanism is lost. The assumptions 
appropriate to the context of one application may not fit the 
contexts of other applications. There are a few basic concepts we 
have to deal with here: 

 
• Oneness. 
• Sameness. When do we say two things are the same, or 

the same thing? How does change affect identity? 
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• What is it? In what categories do we perceive the thing 
to be? What categories do we acknowledge? How well 
defined are they? 

 
These concepts and questions are tightly intertwined with 

one another. 
Consider “book”. If an author has written two books, a 

bibliographic database will have two representatives. (You may 
temporarily think of a representative as being a record.) If a 
lending library has five circulating copies of each, it will have 
ten representatives in its files. After we recognize the ambiguity 
we try to carefully adopt a convention using the words “book” 
and “copy”. But it is not natural usage. Would you understand 
the question “How many copies are there in the library?” when I 
really want to know how many physical books the library has 
altogether? 

There are other connotations of the word “book” that could 
interfere with the smooth integration of databases. A “book” may 
denote something with hard covers, as distinguished from things 
in soft covers like manuals, periodicals, etc. Thus a manual may 
be classified as a “book” in one library but not in another. I don’t 
always know whether conference proceedings constitute a 
“book”. 

A “book” may denote something bound together as one 
physical unit. Thus a single long novel may be printed in two 
physical parts. When we recognize the ambiguity, we sometimes 
try to avoid it by agreeing to use the term “volume” in a certain 
way, but we are not always consistent. Sometimes several 
“volumes” are bound into one physical “book”. We now have as 
plausible perceptions: the one book written by an author, the two 
books in the library’s title files (Vol. I and Vol. II), and the ten 
books on the shelf of the library which has five copies of 
everything. 

Incidentally, the converse sometimes also happens, as when 
several novels are published as one physical book (e.g., collected 
works). 

So, once again, if we are going to have a database about 
books, before we can know what one representative stands for, 
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we had better have a consensus among all users as to what “one 
book” is. 

Going back now to parts and warehouses, the notion of 
“warehouse” opens up another kind of ambiguity. There is no 
natural, intrinsic notion of what constitutes “one warehouse”. It 
may be a single building, or a group of buildings separated by 
any arbitrary distance. Several warehouses (e.g., belonging to 
different companies) may occupy the same building, perhaps on 
different floors. So, what is “one warehouse”? Anything that a 
certain group of people agrees to call a warehouse. Given two 
buildings, they might agree to treat them as one, two, or any 
number of warehouses ⎯ with all perceptions being equally 
“correct”. 

IBM assigns “building numbers” to its buildings for the 
routing of internal mail, recording employee locations, and other 
purposes. One two-story building in Palo Alto, California is 
“building 046”, with the two stories distinguished by suffixes: 
046-1 and 046-2. Right next door is another two-story building. 
The upper story is itself called “building 034”, and the lower 
story is split into two parts called “building 032” and “building 
047”. IBM didn’t invent the situation. The designations 
correspond to three different postal addresses: 1508, 1510, and 
1512 Page Mill Road are all in the same building. 

Another IBM location in Santa Teresa, California, is 
apparently one building, since it has one building number. The 
structure has eight distinct towers. Signs inside direct you to 
“building A”, “building B”, etc. How many buildings are there? 

“Street” is another ambiguous term. What is one street? 
Sometimes the name changes; that is, different segments along 
the same straight path have different names. Based on a 
comparison of addresses, we would probably surmise that people 
on those various segments lived on different streets. On the other 
hand, different streets in the same town may have the same 
name. Now what does an address comparison imply? 

Sometimes a street is made up of discontinuous segments, 
perhaps because intervening sections just haven’t been built yet. 
They may not even be on a straight line, because the ultimate 
street on somebody’s master plan curves and wiggles all around. 
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And sometimes I can make a right turn, then after some distance 
make a left turn and be back on a street with the same name as 
the first. Is that one street with a jog? When do we start thinking 
of these as different streets having the same name? 

Is a street terminated by city, county, state, or national 
boundaries? Suppose the street just ran right across the boundary, 
same name and all. Would you be inclined to say that people 
living in different countries lived on the same street? 

Does the term “street” imply that motor vehicles can drive 
on it? Some are narrower than alleys, and some are pedestrian 
malls. 

Does the term “street” include freeways, highways, 
thruways, expressways, tollways, parkways, autobahns, 
autopistes, autostradas, autoroutes, dual carriageways, 
motorways, .... (I’m really just trying to convey one idea ⎯ what 
do they call it in your neighborhood?) Very often, one highway 
will coincide with portions of many different streets along its 
route. Does a highway name count as a street name? Along some 
segments, the highway name might be the only street name. 
Various street segments will have various multitudes of names 
(“look at all the highway markers on that pole!”). And, after I 
make a turn, whether or not I’m on the “same street” may 
depend on my own state of mind: which street name did I think I 
was following? Finally: if I drive from New York to California 
on Highway 66, have I been on the same street all the way? 

Thus, the boundaries and extent of “one thing” can be very 
arbitrarily established. This is even more so when we perform 
“classification” in an area that has no natural sharp boundaries at 
all. The set of things that human beings know how to do is 
infinitely varied, and changes from one human being to another 
in the most subtle and devious ways. Nonetheless, the “skills” 
portion of a personnel database asserts a finite number of 
arbitrary skill categories, with each skill being treated as one 
discrete thing, i.e., it has one representative. The number and 
nature of these skills is very arbitrary (i.e., they do not 
correspond to natural, intrinsic boundaries in the real world), and 
they are likely to be different in different databases. Thus, a 
“thing” here is a very arbitrary segment partitioned out of a 
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continuum. This applies also to the set of subjects in a library file 
or information retrieval system, to the set of diseases in a 
medical database, to colors, etc. 

This classification problem underlies the general ambiguity 
of words. The set of concepts we try to communicate about is 
infinite (and non-denumerable in the most mind-boggling sense), 
whereas we communicate using an essentially finite set of words. 
(For this discussion, it suffices just to think about nouns.) Thus, a 
word does not correspond to a single concept, but to a cluster of 
more or less related concepts. Very often, the use of a word to 
denote two different ideas in this cluster can get us into trouble. 

A case in point is the word “well” as used in the data files of 
an oil company. In their geological database, a “well” is a single 
hole drilled in the surface of the earth, whether or not it produces 
oil. In the production database, a “well” is one or more holes 
covered by one piece of equipment, which has tapped into a pool 
of oil. The oil company had trouble integrating these databases to 
support a new application: the correlation of well productivity 
with geological characteristics. 

 
1.2 How Many Things Is It? 

 
A single physical unit often functions in several roles, each 

of which is to be represented as a separate thing in the 
information system. Consider a database maintaining scoring 
statistics for a soccer team, both on a position basis and on an 
individual basis. The database might have representatives for 36 
things: 11 positions and 25 players. When Joe Smith, playing 
halfback, scores a goal, the data about two things is modified: 
the number of goals by Joe Smith, and the number of goals by a 
halfback. That human figure standing on the field is represented 
as (and is) two things: Joe Smith and a halfback. 

Consider the question of “sameness”. Suppose Joe switches 
to fullback, and scores another goal. Did the same thing make 
those two goals? Yes: Joe Smith made both. No: one was made 
by a halfback, the other by a fullback. 

Why is that human figure perceived and treated as two 
things, rather than one or three or ninety-eight? Not by any 



8 

natural law, but by the arbitrary decision of some human beings, 
because the perception was useful to them, and corresponded to 
the kinds of information they were interested in maintaining in 
the system. 

If the file only had data about player positions, then the same 
physical object would be treated as being different things at 
different times. Joe is sometimes a halfback and sometimes a 
fullback. From the perspective of this file, his activities are being 
performed by two different entities. 

Also consider two related people (e.g., husband and wife) 
who work for the same company. When considering medical 
benefits, each of these people has to be considered twice: once as 
an employee, and once as a dependent of an employee. How 
many people are involved? 

Or suppose a person held two jobs with the company, on two 
different shifts. Does that signify one or two employees? 
Shipping clerk John Jones and third-shift computer operator John 
Jones might be the same person. Does it matter? Sometimes. 

The notion is also applicable to warehouses. From the point 
of view of another application, the thing involved is not a 
warehouse at all, but a building or property on the assessment 
rolls. 

It is plausible (bizarre, perhaps, but plausible) to view a 
certain employee and a certain stockholder as two different 
things, between which there happens to exist the relationship that 
they are embodied in the same person. There would then exist 
two representatives in the system, one for the employee and one 
for the stockholder. It’s perfectly all right, so long as users 
understand the implications of this convention (e.g., deleting one 
might not delete the other). 

Transportation schedules and vehicles offer other examples 
of ambiguities, in the use of such terms as “flight” and “plane” 
(even if we ignore the other definitions of “plane” having 
nothing to do with flying machines). What does “catching the 
same plane every Friday” really mean? It may or may not be the 
same physical airplane. But if a mechanic is scheduled to service 
the same plane every Friday, it had better be the same physical 
airplane. And another thing: if two passengers board a plane 
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together in San Francisco, with one holding a ticket to New York 
and the other a ticket to Amsterdam, are they on the same flight? 

Classification, e.g., of skills, impacts the notion of 
“sameness” as much as the notion of “how many”. The way we 
partition skills determines both how many different things we 
recognize in this category, and when we will judge two things to 
be the same. Consider a group of people who know how to do 
such things as paint signs on doors, paint portraits, paint houses, 
draw building blueprints, draw wiring diagrams, etc. One 
classifier might judge that there is just one skill represented by 
all of these capabilities, namely “artist”, and that every person in 
this group had the same skill. Another classifier might claim 
there are two skills here, namely painting and drawing. Then the 
sign painter has the same skill as the portrait painter, but not the 
blueprint drawer. And so on. 

The same game can be played with colors. Two red things 
are the same color. What if one is crimson and the other scarlet? 

The perceptive reader will have noticed that two kinds of 
“how many” questions have been intermixed in this section. At 
first we were exploring how many kinds of things something 
might be perceived to be. But occasionally we were trying to 
determine whether we were dealing with one or several things of 
a given kind. If you can’t apply that distinction to the preceding 
discussions, then please don’t become a database administrator. I 
fear your database may well become a minefield of semantic 
traps. 

For another example of the latter kind, consider program 
problem reports (known as APAR’s in IBM). Considerable effort 
is often expended in determining that the symptoms reported in 
two APAR’s are caused by the same programming error; 
thereafter, the two APAR’s are considered to be the “same”. (The 
correctness of this view depends on whether you think the entity 
involved is the programming error or the problem report.) 

And analogously, much of the fuss in many insurance claims 
and court battles revolves around determining whether several 
things relate to the “same” illness or injury. 
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1.3 Change 

 
And then there’s change. Even after consensus has been 

reached on what things are to be represented in the information 
system, the impact of change must be considered. How much 
change can something undergo and still be the “same thing”? At 
what point is it appropriate to introduce a new representative into 
the system, because change has transformed something into a 
new and different thing? 

The problem is one of identifying or discovering some 
essential invariant characteristic of a thing, which gives it its 
identity. That invariant characteristic is often hard to identify, or 
may not exist at all. 

We seem to have little difficulty with the concept of “one 
person” despite changes in appearance, personality, capabilities, 
and, above all, chemical composition. (The proportions and 
structure ⎯ i.e., the chemical formulas ⎯ may not change much, 
but the individual atoms and molecules are continually being 
replaced... again illustrating an ambiguity between “same kind” 
and “same instance”: how rapidly is the chemical composition of 
your body changing?) When we speak of the same person over a 
period of time, we certainly are not referring to the same 
ensemble of atoms and molecules. What then is the “same 
person”? We can only appeal to some vague intuition about the 
“continuity” of ⎯ something ⎯ through gradual change. The 
concept of “same person” is so familiar and obvious that it is 
absolutely irritating not to be able to define it. Definitions in 
terms of “soul” and “spirit” may be the only true and humanistic 
concepts, but, significantly, we don’t know how to deal with 
them in a computer-based information system. It is only when 
the notion of “person” is pushed to some limit do we realize how 
imprecise the notion is. This is the basis of some legal issues. 

Modern medicine is dissecting our concept of “person” via 
transplanted and artificial limbs and organs. The Hopi Indians 
consider mental activity to be in the heart [Whorf]; they might 
argue that the recipient of a heart transplant becomes the person 
who the donor was ⎯ the donor has merely acquired a new 
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body. (Is it a heart transplant or a body transplant?) We are more 
likely to take that position with respect to the brain, rather than 
the heart. A number of legal issues will have to be resolved when 
brain transplants begin to be performed (and the issues may get 
more complex if just portions of the brain are transplanted). 

In an information system maintaining data about people, we 
will have to decide which information gets interchanged between 
two representatives. Which information is to be associated with 
the body, and which with the brain? A name? A spouse? Other 
relatives? How is the medical history rearranged? Who has 
which job? Skills? Financial obligations? 

We also have some issues regarding the beginning and 
ending of a person. It makes sense in the context of some 
medical records to treat an unborn fetus as an unborn person; 
observations during pregnancy become a part of that person’s 
medical history. A recent court case considered the question of 
whether an unborn fetus was eligible for welfare benefits, which 
would have made the fetus representable in the welfare database. 
After death, a person ceases to exist for many legal purposes, but 
the data about him (or his body) continues to be relevant to a 
cemetery, or a coroner, or a medical researcher. 

An analogous situation exists with automobiles. Suppose 
you and I start trading parts of our cars ⎯ tires, wheels, 
transmissions, suspensions, etc. At some point we will have 
exchanged cars, in the sense that the Department of Motor 
Vehicles must change their records as to who owns which car ⎯ 
but when? What is the “thing” which used to be my car, and 
when did you acquire it? The Department of Motor Vehicles (at 
least in California, I believe) has made an arbitrary decision: the 
“essence” of a car is the engine block, which is (they assume) 
indivisible and is uniquely numbered. Owning and registering a 
car is defined to mean owning and registering the engine block. 
All the other parts of the car can be removed or replaced without 
altering the identity of the car. 

What would happen if another state had a different 
convention for establishing the identity of a car? Could their two 
databases be integrated? 
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The same kinds of questions apply to organizations, such as 
companies, departments, teams, government agencies, etc. Is it 
still the same company after changes in employees? (Of course.) 
Management? (Yes.) Owners? (Maybe.) Buildings and facilities? 
(Yes.) Locations? (Probably.) Name? (Probably). Principal 
business? (Maybe.) State and country of incorporation? (Maybe.) 
The answers are significant to the handling of old contracts and 
other obligations, the determination of employee vacation and 
retirement benefits, etc. 

And political boundaries. A database of population statistics 
must have some definition of what is meant by India, Pakistan, 
Germany, Czechoslovakia, etc., over time. There’s more 
involved than a change of name; the things themselves have been 
created, destroyed, merged, split, re-partitioned, etc. In some 
other database it may have to be understood that two people born 
at different times in the same town might have been born in 
different countries. 

There are some kinds of change which result in the existence 
of two copies of the thing, corresponding to the states before and 
after the change. There are several ways to deal with this 
situation: (1) Discard the old and let the new replace it, so that it 
is really treated as a change and not as a new thing; (2) Treat the 
old and the new as two clearly distinct things; and (3) Try to do 
both. 

The significance of differences between copies shows up in 
books and other textual matter. The document you are reading 
now is one book. It has been and will be the “same book” 
throughout a series of changes, and may even appear published 
in several forms with various changes in wording, punctuation, 
etc. 

A whole spectrum of concepts. There is the “one book” 
containing the ideas expressed by an author, which is the same 
book regardless of which language it is translated into, or how it 
is edited, abridged, condensed, revised, etc. 

Then there are “editions”, which differ from each other by 
some arbitrary amount, due either to changes in the content or to 
the correction of significant amounts of error. On the other hand, 
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some minor amount of difference (erroneous or deliberate) is 
permitted between reprints of a single edition. 

A condensation or abridgment may be grossly different from 
the original, but for some purposes it is treated as being the same 
book. 

This topic is most painfully familiar to us in relation to 
“versions”, e.g., of such things as programs. There is some 
arbitrary threshold up to which minor changes can be made 
without creating a new version. The old copy is discarded, there 
may or may not be a record of the modification, and the 
representative (e.g., catalog entry) of the old copy now serves to 
represent the new copy. 

Beyond a certain (arbitrary) point, we decide to keep the old 
and new copies as different versions. We now enter a 
metaphysical realm in which we manage to merge the concepts 
of “one” and “many”, as in the expression “these several things 
are different versions of the same thing”. In some contexts we 
mean to refer to all versions collectively (as in the property: this 
is a FORTRAN compiler), in some we refer to a particular copy, 
and in some we refer to one copy ⎯ whichever one happens to 
be the “current” version. 

A user who invokes the FORTRAN compiler several times 
probably believes that he is invoking the “same thing” each time 
even if he gets different versions. From this point of view, there 
should be one representative for this thing (“the current version”) 
even though it represents different things at different times. Each 
version should also have its own permanent representative, and 
there probably should also be one representative for the 
collective concept of “FORTRAN compiler” independent of 
version. The representatives for the current copy and the 
collective concept may or may not be the same; is the property 
“required memory size” applicable to both? 

 
1.4 The Murderer and the Butler 

 
Combining the ideas of our last two sections: sometimes it is 

our perception of “how many” which changes. Sometimes two 
distinct entities are eventually determined to be the same one, 
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perhaps after we have accumulated substantial amounts of 
information about each. 

At the beginning of a mystery, we need to think of the 
murderer and the butler as two distinct entities, collecting 
information about each of them separately. After we discover 
that “the butler did it”, have we established that they are “the 
same entity”? Shall we require the modeling system to collapse 
their two representatives into one? I don’t know of any modeling 
system which can cope with that adequately. 

 
1.5 Categories (What Is It?) 

 
We have so far been focusing on the questions of “oneness” 

and “sameness”. That is, given that you and I are pointing to 
some common point in space (or we think we are), and we both 
perceive something occupying that space (perhaps a human 
figure), how many “things” should that be treated as in the 
information system? One? Many? Part of a larger thing? Or not a 
thing at all? 

And: do we really agree on the composition and boundary of 
the thing? Maybe you were pointing at a brick, and I was 
pointing at a wall. 

And: if we point to that same point in space tomorrow (or 
think we are), will we agree on whether or not we are pointing at 
the same thing as we did today? 

None of this focuses on what the thing is. I don’t mean its 
properties, like is it solid, or is it red, or how much does it weigh, 
but what is it? I had to use the phrase “human figure” above 
because I didn’t think you would follow my point if I kept using 
the indefinite word “thing” ⎯ I had to convey some kind of 
tangible example. But that phrase is just one possible perception 
of the “thing” we pointed to. You might have said it was a 
mammal, or a man, or a solid object, or a bus driver, or your 
father, or a stockholder, or a customer, or ... ad nauseam. 

I will refer to what a thing is ⎯ or at least what it is 
described to be in the information system ⎯ as its “category”, 
agreeing with the usage in, e.g., [Abrial]. The same idea is also 
often called “type”, or “entity type”. Like everything else, the 
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treatment of categories requires a number of arbitrary decisions 
to be made. 

There is no natural set of categories. The set of categories to 
be maintained in an information system must be specified for 
that system. In one system it might be employees and customers, 
in another it might be employees and dependents, or enrolled 
computer users, or plaintiffs and defendants, and in an integrated 
database it might include all of these. A given thing 
(representative) might belong to many such categories. 

Not only are there different kinds of categories, but 
categories may be defined at different levels of refinement. One 
application might perceive savings accounts and loan accounts as 
two categories, while another perceives the single category of 
accounts, with “savings” or “loan” being a property of each 
account. In another case, we might have applications dealing 
with furniture or trucks or machines, while another deals with 
capital equipment (assigning everything a unique inventory 
number). Thus, some categories are, by definition, subsets of 
others, making a member of one category automatically a 
member of another. Some categories overlap without being 
subsets. For example, the category of customers (or of plaintiffs, 
in a legal database), might include some people, some 
corporations or other businesses, and some government agencies. 

It is often a matter of choice whether a piece of information 
is to be treated as a category, an attribute, or a relationship. 
(Which raises the question of how fundamental such a 
distinction really is.) This corresponds to the equivalence 
between “that is a parent” (the entities are parents), “that person 
has children” (the entities are people, with the attribute of having 
children), and “that person is the parent of those children” (the 
entities are people and children, related by parentage). 

It’s often difficult to determine whether or not a thing 
belongs in a certain category. Almost all non-trivial categories 
have fuzzy boundaries. That is, we can usually think of some 
object whose membership in the category is debatable. Then 
either the object is arbitrarily categorized by some individual, or 
else there are some locally defined classification rules which 
probably don’t match the rules used in another information 
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system. Just as an example, consider the simple and “well 
understood” category of “employee”. Does it include part-time 
employees? Contract employees? Employees of subsidiary 
companies? Former employees? Retired employees? Employees 
on leave? On military leave? Someone who has just accepted an 
offer? Signed a contract but not yet reported for work? Not only 
do the answers have to be decided according to how the 
company wants to treat the data, but perhaps the questions can’t 
even be answered consistently within the company. A person on 
leave may not be an employee for payroll purposes, although he 
is for benefits purposes. Then the notions of category and 
property have to be reexamined again, to arrive at a set 
meaningful to all users. 

As another example, consider the category of “cars”, and 
decide if the following are included: station wagons, micro-
buses, ordinary buses, pickup trucks, ordinary trucks, motor 
homes, dune buggies, racing carts, motorcycles, etc. What about 
a home-made contrivance in which a short pickup truck bed is 
hung out of the trunk of a sedan? An old bus converted to a 
motor home? 

As long as we are traveling, answer this question: what’s the 
difference between a motel and a hotel? (If you have an answer, 
you haven’t traveled much lately.) 

“A more amusing example is to imagine a continuum of 
physical objects between some given chair and table, constructed 
by letting the chair back shrink while its seat expands and 
flattens, and its legs become higher. There will be some strange 
objects in this continuum which cannot clearly be assigned to 
either class” [Goguen]. Does the distinction between a bench and 
a table depend on your height? 

The editor of a collection is often listed as the “author” of 
the book. Did he “author” anything? 

The category of a thing (i.e., what it is) might be determined 
by its position, or environment, or use, rather than by its intrinsic 
form and composition. In the set of plastic letters my son plays 
with, there is an object that might be an “N” or a “Z”, depending 
on how he holds it. Another one could be a “u” or an “n”, and 
still another might be “b”, “p”, “d”, or “q”. 
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The purposes of the person using an object very often 
determine what that object is perceived to be (cf. [Stamper 77]). I 
can imagine the same hollow metal tube being called a pipe, an 
axle, a lamp pole, a clothes rack, a mop handle, a shower curtain 
rod, and how many more can you name? A nail driven into a wall 
might be designated a coat hook. 

You may think you are carrying the inventory file under your 
arm. But the customs agent perceives a quantity of magnetic 
tape, and randomly snips off a sample. 

Now consider some physical objects. One is a vertical rod 
mounted on the center of a circular stone. The second is a set of 
metal pointers driven 
around a common axis 
by a system of 
mechanical gears. The 
third is a marked 
cylinder of paraffin, 
with a burning cotton 
core. The fourth has 
two chambers, with a 
fluid flowing between 
them. The fifth is a 
flashing digital display 
driven by solid state 
circuitry. Are these all 
the same kind of object? Yes ⎯ if you happen to perceive them 
as clocks. 

On the other hand, is a watch a clock? Of course it is ⎯ but 
try asking someone if he has a clock with him. 

In part, these observations illustrate the difficulty of 
distinguishing between the category (essence) of a thing and the 
uses to which it may be put (its roles). 

There are also interesting questions having to do with 
fragments of things, and imitations. Is it still a donut after you’ve 
taken a bite out of it? Did you ever call a stuffed toy an animal? 

And, like everything else, the category of an object can 
change with time. A dependent becomes an employee, and then a 
customer, and then a stockholder. A slab of marble becomes a 



18 

sculpture. A piece of driftwood becomes a work of art ⎯ just by 
being found and labeled! An ingot of steel becomes a machined 
part. 

The number of entities changes, too. One ingot becomes 
many parts. Cutting a work of art in pieces may be vandalism ⎯ 
or it may create many works of art. 

Perhaps the easiest way out is to ignore the principles of 
continuity and conservation that we have learned since earliest 
childhood. It simply is no longer the same object. The sculptor 
does not “modify” the marble. He destroys the slab, and creates a 
sculpture. 

The fundamental problem of this book is self describing. Just 
as it is difficult to partition a subject like personnel data into neat 
categories, so also is it difficult to partition a subject like 
“information” into neat categories like “categories”, “entities”, 
and “relationships”. Nevertheless, in both cases, it’s much harder 
to deal with the subject if we don’t attempt some such 
partitioning. 

For a closing amusement, do you remember “Who’s On 
First”? Well, here’s a variation: 

“Which is bigger, a baseball team or a football team?” 
“A football team, of course.” 
“Why’s that?” 
“A football team has eleven players, and a baseball team has 

nine.” 
“Name a baseball team.” 
“The San Francisco Giants.” 
“How many players do they have?” 
“About twenty five.” 
“I thought you said a baseball team has nine players.” 
“I guess it’s twenty five.” 
“Any twenty five baseball players?” 
“No, just the twenty five on one roster.” 
“If they trade a player, does that change the team?” 
“Of course.” 
“You mean they’re not the San Francisco Giants any more?” 
And so on. 
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1.6 Existence 

 
In a record processing system, records are created and 

destroyed, and we can decide with some certainty whether or not 
a given record exists at any moment in time. But what can we 
say about the existence of whatever entities may be represented 
by such a record? 

 
1.6.1 How Real? 
 

It is often said that a database models some portion of the 
real world. I’ve said so in this book. 

It ain’t necessarily so. The world being modeled may have 
no real existence. 

It might be historical information (it’s not real now). We can 
debate whether past events have any real existence in the 
present. 

It might be falsified history (it never was real) or falsified 
current information (it isn’t real now). Fraudulent data in welfare 
files: is that a model of the “real” world? 

It might be planning information, about intended states of 
affairs (it isn’t real yet). 

It might be hypothetical conjectures ⎯ “what if” 
speculations (which may never become real). 

One might argue that such worlds have a Platonic, idealistic 
reality, having a real existence in the minds of men in the same 
way as all other concepts. But quite often the information is so 
complex that no one human being comprehends all of it in his 
mind. It is not perceived in its entirety by any agency outside of 
the database itself. Or, although not overly complex, the 
information may simply not have reached any human mind just 
yet. The computer might have performed some computations to 
establish and record some consequence of the known facts, 
which no person happens to be aware of yet. It happens all the 
time: computers often record accounts as being overdrawn some 
time before any people are told about it. And even more 
obviously: that is precisely the point of doing hypothetical 
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simulations by computer. The computer figures out who wins a 
simulated war game; in the interval between the computation and 
a person’s reading of the output, this result is in the computer ⎯ 
but what person “knows” it? 

Where is the reality that the database is modeling? 
And what about fiction? The subjects of some databases are 

the people, places, and events occurring in fiction (literature, 
mythology). This again stretches the concept of the “real world” 
being modeled in a database. (Isn’t fiction the opposite of 
reality?) But beyond that, it challenges certain premises about 
certain kinds of entities. 

It is sometimes held that there are certain “intrinsic 
attributes” which all entities of a certain type must possess. For 
people, such attributes include birthdate, birthplace, parents, 
height, weight, etc. Does Hamlet have these attributes? Cities 
have a geographic location, an area, a population, etc. Does 
Camelot have these attributes? 

Or shall we say instead that Hamlet is not a person, and 
Camelot is not a city? 

Note that this situation is very different from a simple lack of 
information. It is not uncommon to say that we don’t know a 
certain person’s birthday, and to record it as “unknown” in the 
database. That implies the possibility of eventually discovering 
and recording what it is. Instead, we are questioning whether 
such characteristics exist at all. 

To conclude, if we can’t assert that a database models a 
portion of reality, what shall we say that a database does in 
general? It probably doesn’t matter. Once again, it seems that we 
can go about our business quite successfully without being able 
to define (or know) precisely what we are doing. 

If we really did want to define what a database modeled, 
we’d have to start thinking in terms of mental reality rather than 
physical reality. Most things are in the database because they 
“exist” in people’s minds, without having any “objective” 
existence. (Which means we very much have to deal with their 
existing differently in different people’s minds.) And, of the 
things in the database which don’t exist in any person’s mind, 
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whose mental reality is that? Shall we say that the computer has 
a mental reality of its own? 

 
1.6.2 How Long? 
 

Some kinds of entities have a natural starting and ending, 
and others have an “eternal” existence; creation and destruction 
aren’t relevant concepts for them. The latter tends to be true of 
what we call “concepts” ⎯ numbers, dates, colors, distances, 
masses. 

We could be perverse and wonder in what sort of Platonic 
sense such concepts have “always” existed. Did zero exist before 
some ancient Arab thought of it? Did gravity exist before 
Newton? Did the concept of television exist 50 years ago? 

It doesn’t really matter, for our purposes. We are not going to 
have to worry about creating and destroying such conceptual 
entities. Unless.... you are a cosmetic company, “inventing” new 
colors every day... or a number theorist, computing certain 
numbers (e.g., the primes, or perfect numbers), and adding each 
one to a list as you “discover” it. 

There are, at the other extreme, tangible physical objects that 
have a well defined finite period of existence, a beginning and an 
end. Creation and destruction are very relevant concepts here. 

But notice that I hesitate to list examples. Beginnings and 
endings are often processes, rather than instantaneous events. We 
get tied up in our definitions of what entities are in the first 
place. Is it the whole thing when it’s partially formed? The whole 
abortion controversy centers on this: does a person become a 
person at conception, or birth, or somewhere in between? Does a 
car stop being a car when it enters the junkyard? Or after it’s 
been deformed into a solid cube? 

The entity concept enters in some other ways, too. 
Depending on what entity categories we choose, a certain 
process may or may not create an entity. Hiring merely alters the 
attributes of a person, but it creates an employee (but be careful 
⎯ it might be a re-hire!). And, did the sculpture always exist in 
the marble? Recall the old vaudeville directions for sculpting an 
elephant: just cut away the parts that don’t look like an elephant. 
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In spite of all of this, we can entertain a notion that tangible 
objects have a finite existence, a beginning and an ending. 

Not that we always really care. For most of our practical 
purposes, we prefer to treat certain objects as eternal, those 
whose “finite” existences appear virtually infinite: the 
continents, the planets, the sun, the stars. The creation and 
destruction of these are real only to astronomers, and to science 
fiction fans (real???). 

But suppose that we had neatly defined tangible objects, 
with instantaneous beginnings and endings. Does that solve all 
the important problems? 

We are, of course, not interested primarily in the objects 
themselves, but in the information we have about them. Does our 
handling of this information mimic the creation and destruction 
of such objects? Do we start having information about such 
objects at the instant of their creation, and stop having the 
information at the instant of their destruction? Of course not. We 
often become aware of things long after their creation (the 
people we deal with, the things we buy). And we’re sometimes 
aware of them before their creation. Data are kept about children 
before their birth. Unborn ⎯ and unconceived ⎯ children are 
mentioned in wills. Data may kept about ordered merchandise 
long before manufacture begins. 

And we certainly keep information about things long after 
they have ceased to exist. 

So, does the creation and destruction of information have 
any direct relationship to the beginning and ending of objects? 
Almost never. “Create” and “destroy”, when applied to 
information, really instruct the system to “perceive” and 
“forget”. 

Once more: we are not modeling reality, but the way 
information about reality is processed, by people. 
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2 The Nature of an Information System 
 

 
or the most part we are looking at the nature of 
information in the real world. But our ultimate motivation 
is to formulate descriptions of this information so that it 

may be processed by computers. In this chapter we briefly 
explore how this goal shapes our view of information. Among 
other things, we touch on the need for having data descriptions. 

At a fundamental level, there are certain characteristics of 
computers that have a deep philosophical impact on what we do 
with them. Computers are deterministic, structured, simplistic, 
repetitious, unimaginative, unsympathetic, uncreative. These 
notions I leave as background; that’s a different plane from the 
one I want to be on. (Some may argue with those 
characterizations. Some artificial intelligence experiments have 
simulated more elegant computer behavior. But it remains an 
adequate description of the computers that will be processing our 
data in the near term.) 

We take “information system” to be more or less 
synonymous with the term “integrated database”. We mean to 
deal only with information that can be perceived as some formal 
structure of relatively simple field values (as in computerized file 
or catalog processing). We thus exclude, for example, text based 
systems, with their capabilities for parsing, abstracting, indexing, 
and retrieving from natural language text. 

 
2.1 Organization 

 
A computer is typically described as consisting of input, 

processing, output, and memory. I will change the words slightly, 
and suggest that we need to think of three basic parts of a data 
processing system: a repository, an interface, and a processor. 

F 
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2.1.1 Repository 
 

The repository “contains” information, in some static sense. 
We have to have some mental system for imagining what is 
inside that repository. That’s what this book is mostly about. 
Whether we think in terms of words written and erased on 
blackboards or beads resting on an abacus, we have to have some 
mental concept. For some people and some purposes, the right 
image involves magnetic fields and silicon; for others the image 
is in terms of files of punched cards. 

I want to suggest that we try to adopt an image more in terms 
of the informational functions performed for us, rather than in 
terms of the mechanical processes and materials that perform 
those functions. By way of analogy, I would say that we should 
think of a clock as containing a “repeater”, an abstract 
mechanism capable of actuating something at precise and 
uniform time intervals. We would say nothing about gears and 
escapements, or silicon circuits, or pivoted and balanced water 
pipes. 

 
2.1.2 Interface 
 

The interface is the medium of communication between you 
and the repository, or, more precisely, between you and the 
processor. It may actually consist of punched cards and readers, 
printers and printed forms, typewriter terminals, graphic 
displays, etc. etc. For our purposes, we need only imagine it as 
an opaque surface with a stream of symbols passing in and out of 
it. 

 
2.1.3 Processor 
 

The processor receives symbol streams coming in across the 
interface. Parts of the stream are instructions to the processor, 
e.g., to change information or to find answers to questions. Parts 
of the stream represent information which is to be put into the 



25 

repository, or which is used to find things in the repository (e.g., 
the name of the person about which you want information). 

The processor, following instructions, alters or retrieves 
information in the repository. It then generates an outgoing 
stream across the interface, containing either requested 
information or status about the operations. 

 
2.2 Data Description 

 
2.2.1 Purpose 
 

In a totally generalized system, there might be a universal 
naming convention uniformly applicable to all things. For 
example, one might postulate that a name is any string of 
characters, of unlimited length; every thing has one or more such 
names (if several, the names are interchangeable and 
synonymous). Conventional systems don’t support such 
generality, and we rarely want it. In most cases, there are 
restrictions on the kinds of names that are acceptable. There may 
be limits on length (perhaps a certain fixed length for a certain 
kind of thing), and restrictions on acceptable characters and 
syntax (only digits, only letters, must start with a letter, hyphens 
in certain positions, rules about blanks and commas and periods, 
etc.). A thing often has different kinds of names, which are not 
synonymous and interchangeable (social security number and 
employee number; license number and engine number). To 
enforce such constraints, we have to notify the information 
system, in advance, which naming conventions will apply to 
which kinds of things (to employees, departments, parts, 
warehouses, cities, cars, etc.). 

Similarly, an information system might be totally permissive, 
imposing no constraints at all on the semantic sensibility of 
information. The system would accept such information as “the 
accounting department has a shipping weight of 30 pounds, and 
has two children named 999-1234 and 12.50”. While it is 
possible to build such totally generalized systems, it is 
customary, in all current data processing systems, to exclude 



26 

such absurdities. Provision is needed to specify which things can 
sensibly have which properties, and which relationships make 
sense between which things. 

Pre-definition of information is also needed in order to 
specify security constraints, to specify validity criteria for 
information, and to specify how representations are to be 
interpreted (data type, scale, units, etc.). 

There are also economic implications. Known limitations on 
the lengths of various information, and a predictability of which 
pieces of information will or won’t occur together, make it 
possible to plan much more efficient utilization of computer 
storage. In fact, if the constraints are strict enough, very efficient 
repetitions of simple patterns can be employed. Furthermore, if 
formats are rigid enough, and the number of combinations of 
things that might occur is limited, then programs and procedures 
can be kept simple and efficient. This is precisely why data 
processing is currently done in terms of records. 

Such rules and descriptions should be assertable before 
information is loaded into the system, and obviously can’t be 
expressed in terms of individuals. (“Tom, Dick, and Harry must 
have 6-digit employee numbers.”) 

At the semantic level, we have adopted (in section 1.5.) the 
term “category” to label the intrinsic character of a thing (“man 
or mouse”). It also offers an attractive way of specifying rules 
about things without referring to the individual things. One 
simply asserts that certain rules apply to all things in a certain 
category; one only has to name the category, not the individuals.  

Categories are at the foundation of almost all approaches to 
the description of data, and we will also adopt such an approach 
for the time being. But we will have some critical things to say 
about it later. 

 
2.2.2 Levels of Description 
 

Real systems are not so monolithically simple as our 
idealized system organization of interface, processor, and 
repository. A single system typically supports a myriad of 
interfaces and processors, each with its own capabilities, 



27 

protocols, and languages. A large variety of programs are 
developed to serve a variety of application areas. For our 
purposes, it doesn’t matter whether we think of such programs as 
interface or processor. 

The various people and applications using a database are 
likely to have different perceptions of the entities and 
information they are dealing with (employees vs. stockholders; 
employer implied by record type vs. employer as a field value). 
Different applications use different facts about entities, so that an 
employee record may look quite different in the personnel 
application and in the medical benefits application. It is also 
possible for these applications to use different data processing 
disciplines, i.e., different file types, access methods, and data 
structures. These generally provide different ways of 
representing relationships and different interfaces for 
manipulating the data. 

Thus there is a level of description corresponding to the 
perceptions and expectations of various applications, specifying 
such things as record formats, data structures, and access 
methods. For some kinds of question answering systems, or 
systems with graphical displays, the descriptions might not even 
be couched in terms of record formats. 

All these applications may be supported by a common pool 
of data, an integrated database. One significance of integration is 
that common attributes are synchronized; e.g., changing an 
employee’s address also changes his address in the stockholder 
file, if he happens to be one. Synchronization may be achieved 
by maintaining the address in only one place, or by the system’s 
recognizing that a change in one place must automatically be 
propagated to another place. The method doesn’t matter, as long 
as the information appears synchronized to users. 

Another significance of integration is that a new application 
may “borrow” data already in the database for the benefit of 
other applications. The new application’s requirements can be 
mapped directly to the integrated database. Without integration, 
it can be difficult and often impossible to extract the data from 
several physically unrelated files and then merge it into a form 
useful to the new application. 
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The integrated database is the system’s analog to the real 
world: it is that ongoing persistent thing of which different 
applications may have different perceptions. 

Unlike the real world, however, we don’t have the luxury of 
merely saying “it’s there ⎯ make of it what you will, with your 
own eyes and ears and mind”. The database has to be described 
to the system. 

We have a choice of describing the integrated database in 
“physical” terms, or in both “physical” and “logical” terms. 
Physical descriptions specify the location, format, and 
organization of the data on disks, tapes, or other storage media; 
the locations of key fields in records; the kinds of pointers used 
to reference related records; the criteria for physical contiguity of 
records, and the handling of “overflow” records; the kinds of 
indexes provided, and their locations; etc. Logical descriptions 
are more in terms of the information content of the database: the 
kinds of entities, the attributes, and the relationships among 
them. 

We have identified three levels of description: 
 
• The multiple views held by a variety of applications, 

each employing their own variations on record formats, 
structures, and access techniques. This level is variously 
referred to as “user”, “application”, “external”, 
“program”, and “logical”. 

• The physical layout of data in storage, including 
implementation techniques for various paths and 
linkages. The common names for this level are 
“internal”, “storage”, and “physical”. 

• The specification of the information content of the 
database, employing concepts equivalent to entities, 
attributes, and relationships. Names for this level include 
“conceptual”, “information”, and “entity” (and, 
sometimes, “logical”). 

 
There is growing recognition of a need to provide and 

maintain these three levels of description ([ANSI], [GUIDE-
SHARE]). 
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This separation into multiple levels of descriptions is 
necessary to cope with change. Experience has shown that the 
way data is used changes with time. Application programs 
change the way they use the data. They change record formats, 
and they change the combinations of records they need to see in 
a single process. New applications need to see records containing 
data that had previously been split among several records. Other 
new applications need extensions to existing data (e.g., 
additional fields in old records), without perturbing the old 
applications. Applications sometimes change the data 
management technique which they use to access the data. 

Below the interface seen by these applications, the physical 
layout of the data changes. The grouping and sequencing of data, 
redundancy, and various kinds of access paths combine to 
provide certain performance tradeoffs for the various 
applications. Such parameters are often “tuned” to vary these 
performance characteristics, and such tuning is not supposed to 
affect the logical operations of the applications. 

As an increasing number of applications interact with an 
increasingly large integrated database, the effects of such 
changes become much more complex, more difficult to predict 
and control. Davies described the problem some ten years ago: 

“...nothing stands still or, conversely, everything is subject to 
change and does... When IBM changed from five to six character 
man numbers, all programs referring to a data set containing man 
numbers had to be recompiled. In addition, all data sets in active 
use had to be copied to change their formats. This was by no 
means the end of the work. What about the data sets containing 
man numbers that had become history? The man number field 
most certainly did not change length in these data sets. Now we 
have two definitions of the field to contend with forever, unless 
of course all history is copied and the format changed to reflect 
the latest definition of the field wherever it appears. In the case 
of applications like inventory control for fifty thousand items or 
so, this would have been in excess of two thousand reels of tape! 

“This is still not the end. All programs referring to history 
would have to be recompiled. Another example of the kind of 
change that is punitive to current application programs is the 
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case of the field that changes from one data set to another. It 
must be understood that a data set represents that collection of 
fields most frequently needed the majority of the time. While 
this, of course, is absolutely true, frequency of access changes 
with time. 

“Unfortunately, a program written today that did not require 
a certain field may, when changed tomorrow, require that field. If 
we physically move the field from one data set to another, 
although we satisfy the program requiring the field, we would 
have rendered useless the programs previously referencing the 
original data set from which we removed the field. These 
programs could not be recompiled to recover our losses but 
rather their logic would have to be changed in order to address 
the field, because it is now in a different physical data set. 

“The preceding are but two occurrences of changes to a data 
set that did not affect the logic of most programs using the data 
set. The author has been a witness to no less than five hundred 
such changes, affecting over fifteen hundred data sets and five 
thousand programs. The logic was not being changed. It is 
frightening to say the least, but worse, it reduces the already too 
small qualified programming staffs to fire fighters instead of 
allowing them to enlarge the application” [Davies]. 

A need is emerging to manage the data in a manner that is 
insensitive to such changes. A new role is emerging ⎯ the 
Database Administrator. A large part of his job consists of 
defining and managing this mass of information as a corporate 
resource ([ANSI] splits out this part of the job into the role of 
“enterprise administrator”). He needs a way to describe this 
information purely in terms of “what kinds of information do we 
maintain in the system”. With this description (the conceptual 
model) as a reference, he can then separately specify the various 
formats in which this data is to be made available to application 
processes (the external models), and also the physical 
organizations in which the data is to exist in the machine (the 
internal model). 

Besides its role in an operational database system, a 
conceptual model is also needed in the planning process. It 
provides the basic vocabulary, or notation, with which to collect 
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the information requirements of various parts of the enterprise. It 
provides the constructs for examining the interdependencies and 
redundancies in the requirements, and for planning the 
information content of the database. 

This book is essentially concerned with the conceptual 
model, i.e., the descriptions of the information content of the 
database. It reflects a perception of reality held by one person or 
group, in the role of database administrator. This administrator 
decides what portion of the real world is to be reflected in the 
database, and which constructs, conventions, models, 
assumptions, etc., are to be used. Although it is a single 
perception of reality, it must be broad and universal enough to be 
transformable into the perceptions of all the applications 
supported by the database. 
 
2.2.3 The Traditional Separation of Descriptions and Data 
 

In traditional record processing systems, constraints on 
information are implicitly enforced by the rigid discipline of 
record formats. The birthday of a car cannot be recorded 
anywhere, if there is no defined record format putting two such 
fields into one record. Alphabetic employee numbers are 
excluded by specifying the data type of the field as numeric; the 
defined field length determines the length of acceptable 
employee numbers. 

Out of this practice emerged a “type” concept, referring to 
record formats. A set of records of type X all conform to the 
described format for type X records. And the systems require 
record descriptions. (But the level of discipline varies 
considerably. A system might only require specification of the 
length of a record, to know how to fit it into available storage. In 
such a minimal system, all kinds of junk might still be crammed 
into a record.) 

Such practices have two consequences in data processing 
systems: the emergence of a type concept, and the partitioning of 
the repository into two disjoint parts (often with distinct 
interfaces and processors): one for the data, and one for the 
descriptions. 
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We have thus far described a very simple system 
organization, consisting of interface, processor, and repository. 
The descriptions, and constraints, have to be somewhere. 

Historically, the repository has been partitioned into two 
unconnected regions, the data files and the descriptions 
(contained in system catalogs or data dictionaries). The 
descriptions had to be formatted specially because system code 
looked at it, and it had to do that efficiently. Also the system had 
to be protected from anyone tampering with the descriptions, as 
they might with ordinary data, because the system fell apart if 
the descriptions didn’t match the data. If a file description is 
changed, that’s more than just a change in information ⎯ the 
system has to do something, usually traumatic, to make the file 
fit the new description. 

These concerns far overshadowed any possible need by any 
application to get at data that happened to be in the catalog or 
dictionary. The separation is so entrenched in the thinking of 
most data processing people that they don’t even understand 
what I’m talking about. Catalogs and files are so “obviously” 
different things that they can’t fathom any commonality. One of 
them is encoded information used by the system, and the other is 
the data used by applications. 

There are some parallels between the two. Files and catalogs 
both contain descriptions (or data) about things. We can easily 
switch the traditional uses of some terms: an employee file 
contains descriptions of employees, while catalogs contain data 
⎯ about data. Consider the parallels between the conceptual 
forms of such information: 

 
• A record type contains a number of fields, each of which 

has a name and some attributes. 
• A department has a number of employees, each of which 

has an identifier and some attributes. 
 
These statements are perfectly symmetrical in form. There is 

an important functional difference: with data about data, 
modifications need to be carefully controlled; they have 
consequences that must be carried out by the system. E.g., if 
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someone says the number of fields in a record type is changed, 
then the file containing those records had better actually be 
reformatted. 

The distinction between information needed by the system 
and by applications isn’t so sharp either; we have examples in 
section 8.2.2. And, finally, I would point out that systems can be 
implemented with the data and descriptions in the same 
repository, and in the same form (e.g., System R [Chamberlin 
76b]). 
 

2.3 What is “In the System”? 
 

The perverse nature of information touches everything: we 
can’t even clearly define what information is “in the system”. 

For the purpose of this discussion, we distinguish between 
“raw” and “deduced” information. Raw information is that 
which the system has no way of knowing unless it is asserted to 
the system, e.g., the names of the employees in a department. 
Deduced information is then anything that can be computed or 
otherwise derived from the raw information, e.g., the number of 
employees in the department. Under what conditions shall we 
consider deduced information to be “in the system”? Consider 
the following cases: 

 
1. The only way to determine the number of employees in 

the department is to ask for the names and count them 
yourself. 

2. There is a count field in the department record. 
Whenever an application adds or deletes an employee, 
the application is also supposed to update the count field. 

3. Declarations for the information system define a 
computed count field. Whenever an employee is added 
or removed, the system updates the count and stores it 
with the other information about the department. 

4. Declarations for the information system define a count 
field as part of the data needed by your application. The 
field is never stored (this is sometimes called a “virtual” 
data field). Whenever your application retrieves a 
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department record, the system counts the number of 
employees and inserts the count into the record produced 
for your application. 
Your application can’t tell the difference between cases 3 
and 4, except perhaps in the time it takes to retrieve the 
information. 

5. You interface with a query processor, and ask it how 
many employees are in the department. The query 
processor extracts the list of names, counts them, and 
tells you the answer. (Sometimes a query processor can 
be considered part of the information system. I am 
thinking more of the case where a query processor can 
be purchased and installed separately, after the 
underlying system has been installed and loaded with 
data. Does installing the query processor increase the 
information content of the system?) 

6. The manipulative interface of the information system 
provides a count function. For example, it may be 
possible to request “the next department record for 
which the count of employees exceeds ten”. 

 
In which of these cases does the system “contain” the 

information? The only unambiguous cases are 2 and 3, where the 
data is literally stored in the system. The other cases can all be 
debated, and have been. Consider case 1 from the security point 
of view. Suppose the size of a department is sensitive 
information. If you release a list of a department’s employees, 
have you violated security? The security officer would take a 
dim view of your protest “I didn’t tell them how many!”. 

We will have more about implicit relationships in sections 
4.6 and 10.5. 

There is another sense in which information may implicitly 
exist in the system. One often tends to think of information in the 
system as the contents of various fields in records. A fact in a 
database is sometimes defined as an association between two 
fields: one giving the value of an attribute (weight = 200 lb.) and 
one identifying the entity having that attribute (name = Henry 
Jones). However, the mere existence of a record in a file in itself 
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bears information. In the employee file, there is no field giving 
the employer’s name; the presence of the record in the file 
implies that the corresponding person works for this company. In 
effect, the employee file serves as an “existence list” (cf. sections 
2.4, 10.6.). 

Another common form of implicitly represented information 
has to do with data which depends on some kind of continuous 
variable, such as time or weight. Examples: the departments to 
which an employee was assigned at various times, or the postal 
rates applicable to various shipping weights. Although one can 
determine what an employee’s department was at any point in 
time, the data is not stored that way. The only things which are 
actually stored are “breakpoints”, i.e., points (of time or weight) 
at which the information changes. Extracting the data values for 
a given time or weight involves a combination of table lookup 
and computation. These are examples of procedural existence 
tests, essentially of a range test variety (section 2.4), combined 
with computed relationships (section 4.6). 

[Folinus] offers a unifying approach to many of these 
questions which equates “data in the system” with what can be 
extracted, rather than with what is physically stored. The system 
is modeled as a set of named functions, which are capable of 
returning certain values when invoked with certain arguments. 
An update presumably modifies the function, so that it 
subsequently returns different results for the same argument. The 
implementation of the functions is masked from the user; it 
might involve simple access to stored data, complex traversals of 
data structure, and/or computations. Thus the information 
content of the system is defined by this set of functions, rather 
than in terms of physically stored data. (It may not be possible to 
completely hide the implementation; see section 4.6.) This 
description of information content is still incomplete, of course. 
We can always mentally infer other information from the values 
returned by functions. [Hall 75] presents a somewhat similar 
notion of representing a relation as a procedural mapping. 
Similar concepts occur in the “accessor” mechanism of [Abrial], 
and also in inferential systems (e.g., [Ash], [Levien]). 
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Case 6 does illustrate another important point. The kinds of 
information that a system is capable of handling are as much 
determined by its manipulative interface as by its declarative 
facilities. There is a very thin line between the ability to declare 
something about a data item and the ability to dynamically 
request a data item with the same characteristics. Someone has 
said that “structure is process slowed down”. The more you 
declare, the less your applications have to do procedurally ⎯ 
and the effect is more stable. 

In terms of the abstract organization of an information 
system we introduced earlier: the distinction between processor 
and repository is not so clear after all. 

Still another form of implicit information concerns the 
meaning of the data items in the system. In almost all current 
data systems, you would be able to retrieve a record containing 
“Joe Smith” and “95” in adjacent fields, with no clue from the 
system as to whether the “95” was his age, weight, commuting 
distance, hours worked last week, or something else. If such 
information is in the system at all, it is traditionally in a catalog 
or dictionary, quite segregated from the data you are processing, 
and having to be accessed by entirely different means (section 
2.2.3). It is customary to expect that you, the user, know what the 
fields signify. The manner in which a multiplicity of users get to 
know, and agree about, what these data items mean is the central 
point of data description. 

Such information could be perceived as part of the “normal” 
information content of the system if we expect to get answers to 
such questions as: 

 
• What attributes do we maintain about employees? 
• Which attributes of Joe Smith have undefined (or null) 

values? 
• In what relationships is Joe Smith involved? 
• What are the relationships between Joe Smith and 

department Z99? 
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2.4 Existence Tests In Information Systems 
 

Suppose you said to the processor, across the interface, “Put 
this in your repository: John Smith lives in Poughkeepsie.” How 
does the processor know there is such a place as Poughkeepsie? 
Does it care? 

Depending on the kinds of entities involved, and often on the 
whims of the people who set up the system, the processor might 
go to various kinds of efforts to verify existence. At bottom, they 
are really acceptance tests, which may or may not have some 
correspondence with existence. What is being tested is the 
acceptability of a symbol. 
 
2.4.1 Acceptance Tests: List and Non-List 
 

We can broadly classify the tests as list tests and non-list 
tests. For list tests, there is an explicit list of existing elements 
with which the symbol can be compared. If it matches, then the 
corresponding entity can be presumed to exist. 

In practice, such lists tend to be either static or dynamic. A 
static list is permanently defined, and is usually incorporated into 
the data description rather then occurring in the data itself. They 
often occur in the form of rules, e.g., “sex” may be “male” or 
“female”. Such rules, occurring in the data description, tend to 
be strictly enforced. These static lists can actually be modified, 
but that’s exceptional and traumatic. 

Dynamic lists occur in the data itself, and they can be 
modified by the normal update activity on the data. That is, part 
of the normal activity on the data includes inserting and 
removing such entities. A dynamic list might simply be a set of 
symbols; or it might be a set of objects representing entities, to 
which the symbols are associated as names. In conventional 
systems, records often play the role of such lists. E.g., a 
reference to an employee is acceptable if and only if there is a 
record for him in the employee file. Actual practice varies widely 
in this respect; various systems enforce such rules to varying 
degrees. 
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Non-list tests involve some procedure other than list 
checking. The most common forms of these are range checks and 
syntactic checks. Range checks require valid values to lie 
between specified limits. Syntactic checks are based entirely on 
rules governing the composition of the symbol itself; no other 
indication of existence or meaning is involved. 

Syntactic checking is by far the most common, being the 
essential idea behind the specification of data types. Quite often 
the only constraint on the acceptability of a symbol is that it must 
be numeric, or it must be alphabetic, and often must contain a 
specified number of characters. For numeric quantities, such 
acceptability is usually an adequate assurance of existence: there 
actually does exist a real quantity corresponding to each possible 
sequence of digits. But for alphabetic symbols, there is no such 
assurance. Symbols are all too often accepted as the names of 
people, companies, addresses, states, countries, and so on, with 
no test at all for their existence. 

For many entity types, any of the existence tests might be 
employed in a real system. In practice, tradeoffs are made 
between the cost of performing the tests and the cost of 
misrepresenting the existence of the entities. The vast majority of 
data items in today’s files are subjected (in the information 
system) only to syntactic tests, leaving open the possibility of 
nonsense references to non-existent entities. While information 
systems are supposed to be modeling some aspect of reality, 
there does seem to be a very mixed bag of techniques for 
synchronizing the system’s perceptions with the actual existence 
of things. 

 
2.4.2 An Act of Creation 
 

Entities whose existence is modeled by a list test require an 
explicit act of creation. Some overt act is required to establish 
the existence of such an entity before other things can be said 
about it. E.g., it has to be included in the list of acceptable values 
in the entity type definition, or something like the insertion of an 
employee record must occur before any other reference to that 
employee is permitted. 
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(Real systems vary in the degree to which such semantic 
consistency is enforced, especially in regard to deletion. Many 
systems will allow references to such an employee to persist in 
the data even if the employee record is deleted.) 

In contrast, entities defined by non-list tests have a kind of 
“eternal” existence. Once the procedure is defined, the entire set 
of things acceptable to it exist implicitly. Such entities do not 
require an overt act of creation prior to being referenced. 
 
2.4.3 Existence by Mention 
 

I biased things a bit by equating existence with acceptance. 
There is a much simpler sense of existence. We could simply be 
asking about what things are known to exist at the moment, 
rather than the acceptability of a certain symbol. In that case, 
Poughkeepsie exists if it happens to be mentioned as someone’s 
residence, while London doesn’t if none of our people lives 
there. 

There are three very different notions of “the domain of 
cities” (or “the set of cities”) operative here: 

 
1. The real set of existing cities (ignoring, for the moment, 

arguments about historical or fictional cities). 
2. The set of cities whose names are acceptable as input 

(which includes ZZZZZZZ, together with every other 
alphabetic sequence of acceptable length). 

3. The set of cities currently mentioned in the computer’s 
data (which, in our example, excludes London). 

 
In general, this ambivalence will be true wherever the 

acceptance test is limited to a loose syntactic check. 
 
2.4.4 Existence By Implication 
 

If the computer knows the date you were hired and the date 
you were fired, it can list all the dates on which you were an 
employee. Do those dates “exist” in the machine? We’ll come 
back to that in section 2.3. 
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2.5 Records and Representatives 

 
An attempt to provide a regular modeling of the existence of 

entities leads to the notion of “representatives”. 
The traditional construct that represents something in an 

information system is the record. It doesn’t take much to break 
down the seeming simplicity and singularity of this construct. 
What is a record? In manual (non-computerized) systems, it 
could be one sheet of paper, or one card, or one file folder. It 
might sometimes have a formal structure and boundaries, like a 
printed form (perhaps several pages long, or extending over 
several cards). Sometimes it doesn’t have much structure, but 
runs on to several pages or cards (consider a library catalog that 
has continuation cards), yet with some recognizable convention 
for distinguishing one record from another. 

The concept of “record” is equally muddy in computer 
systems. The term sometimes refers to: 

 
• A geometrically defined piece of storage medium: card, 

record within a track on disk, area between blank 
portions of tape. 

• A quantity of data transferred as one chunk between 
external storage media and main storage (sometimes 
called a block). This chunk of data generally goes into a 
buffer area in main storage, managed by an access 
method. 

• A quantity of data transferred as one chunk by an access 
method between a buffer and an application program. 

• Several such chunks, whose contents have some logical 
relationship (as in [IMS]). 

 
Sometimes a record is associated with a piece of physical 

medium: the first 80 characters on one track are not the same 
record as the first 80 characters of another track. Sometimes a 
record is associated with its contents: “one” employee record 
may exist simultaneously on a punched card, in a spool file on a 
disk, in a buffer, and in an application program’s work area. 
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By various rules and conventions, we somehow know how 
to call a collection of data “one record” even though: 

 
• It may physically exist in several copies (in main 

memory, on one or more auxiliary storage devices ⎯ 
e.g., a primary copy and a backup copy); 

• It may not be physically contiguous (it may be stored in 
fragments, e.g., span tracks, on auxiliary storage); 

• Its location and content change over time. 
 
Thus, even at this level, we do not have a truly tangible, 

physical construct called “record”, but rather we have to deal 
with it abstractly. We try to get by with some concept like “a 
record is that data which appears in my buffer whenever I submit 
a certain key to a certain access method using a certain index” 
(and even that is full of holes). 

In some uses of the term “record”, its characteristics are 
constrained by the processing system (device and media 
characteristics, access method) rather than by the information 
content appropriate to an application. This might include such 
constraints as: 

 
• absolutely fixed length records (e.g., 80-byte card 

image). 
• declarable but fixed lengths per “record type” or per 

“file”. 
• upper limits on record lengths. 
• fixed number of fields per record. 
• fixed length fields. 
 
In general, the record concept grew out of data processing 

technology, and reflects many things besides the desire to 
represent an entity in a model of information. (More on this in 
chapter 8.) 

Thus, something that an application might want to deal with 
as a “medical record” may not correspond to a single “access 
method” record, but to some kind of structured collection of such 
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records. In this sense, the IMS concept of a record (consisting of 
a variable number of structurally related segments) is a fairly 
good approximation to an application’s concept of a record. 

We are after some single construct that we can imagine to 
exist in the repository of an information system, for the purpose 
of representing a thing in the real world. Beyond grappling with 
the definition of “record”, we have another traditional problem to 
contend with. In many current information systems, we find that 
a thing in the real world is represented by, not one, but many 
records. A library book is represented in the catalog by at least a 
title card, an author card, and a subject card. A person may be 
represented by a personnel record, a health record, a benefits 
record, an education record, a stockholder record, etc. In this 
latter case, of course, we are viewing all the files maintained by 
one company as constituting a single information system. 

One objective of a coherent information system (i.e., an 
integrated database) is to minimize this multiplicity of records, 
for several reasons. In the first place, these various records 
usually contain some common information (address, date of 
birth, social security number); it takes extra work to maintain all 
the copies of this data, and the information tends to become 
inconsistent (sooner or later, somebody will have different 
addresses recorded in different files). Secondly, new applications 
often need data from several of these records. 

So, we integrate these various records into one “pool” of 
data about an individual ⎯ and thereby introduce several new 
concepts of “record”. On the one hand, it might be this pool of 
data. On the other hand, it is often used to mean that data which 
an application sees, which might bear no simple physical 
resemblance at all to the underlying pool of data. A “medical 
record” would consist of some subset of data out of this pool, 
perhaps collected from scattered physical locations, and 
formatted to the requirements of some application. 

Well, then. If we can’t pin down “records” to represent 
things in the real world, could we somehow use this underlying 
pool of data as a representative? Maybe. The problem is that we 
would like the representatives of two things to somehow be 
cleanly disjoint, to be distinctly separate from each other. 
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Unfortunately, much of the data about something concerns its 
relationships to other things, and therefore comprises data about 
those other things as well. The enrollment of a student in a class 
is just as much a fact about the student as about the class. So, we 
can’t draw an imaginary circle around a body of information and 
say that it contains everything we know about a certain thing, 
and everything in the circle pertains only to that thing, and hence 
that information “represents” the thing. Even if we could, the 
concept is just too “smeared” ⎯ we need some kind of focal 
point to which we can figuratively point and say “this is the 
representative of that thing”. 

We won’t try to solve this problem. We will simply skirt the 
whole issue and continue to use the term “representative” 
(borrowing it from [Griffith]; [Hall 76] uses the term 
“surrogate”). We need the terminology to develop some concepts 
of information representation, without getting too tangled up in 
machine processing constructs. In some situations a 
representative may correspond to a record, or to a segment 
(IMS), or to a row in a relation; sometimes none of these 
constructs quite fits the concept of a representative. 

Another reason for introducing the term “representative” is 
that our topic is broad enough to include systems that don’t even 
use the term “record”. In computer catalogs and directories, we 
have “entries”, and in data dictionaries we have “subjects”. 

Although it is an abstraction, related to a theoretical view of 
data and data description, the representative has some definite 
properties, some of them reflecting the computer environment 
which is its ultimate motivation. The characteristics of a 
representative in an idealized repository might include these: 

 
• A representative is intended to represent one thing in the 

real world, and that real thing should have only one 
representative in an information system. There may be 
some controlled redundancy in the physically stored 
data, such as duplicate copies of records in order to 
optimize different access strategies. That doesn’t violate 
this principle, if there is some provision for keeping the 
contents of such records acceptably synchronized. Note 
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that we have the corollary concept of information 
systems themselves as bounded, disjoint collections. 
Something in the real world may have several 
representatives in several information systems, but 
should have no more than one representative in each. 
Note further that this last constraint is a matter of intent, 
not definition. Something in the real world may in fact 
have several representatives in one information system, 
due to that system’s failure to detect the duplication. 
This is an error situation that nonetheless can occur. It’s 
a familiar headache to welfare agencies: a person 
fraudulently drawing benefits under several different 
names. 

• Representatives can be linked. This is the fundamental 
basis for representing information (in addition to the fact 
that the representatives exist). 

• The information expressed by linking representatives 
includes such things as relationships, attributes, types, 
names, and rules. 

• The kinds of rules that generally need to be specifiable 
about representatives include conventions governing 
their type, names, existence tests, equality tests, and 
general constraints on their relationships to other things. 

• For representatives with explicit existence tests, the 
representative must be created by an overt operation on 
the information system. It does not exist simply because 
its counterpart in the real world exists. An information 
system may or may not be able to detect the creation of 
two representatives for the same thing. It will assume 
that two representatives represent two different things. 

• The information associated with a representative must be 
asserted explicitly to the information system. The system 
is not omniscient. (We exclude here information that can 
be computed or derived from other asserted 
information.) The accuracy and currency of the 
information is determined by the assertions. 

• It would help to have some mechanism to clearly and 
unambiguously indicate what is meant by “one” and “the 
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same” representative. A numbering system would 
suffice, wherein each representative is assigned a 
number unique within an information system, and 
numbers are not re-used after a representative is 
destroyed. Whether or not it is provided in a real 
implementation, this scheme defines the concepts of 
“one” and “same” representative in an information 
system. A representative always has exactly one and the 
same number, and no other representative ever has that 
number. Two references (e.g., names, relationships) refer 
to the same representative if and only if they refer to the 
same representative number. 
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3 Naming 
 
 

3.1 How Many Ways? 
 
he purpose of an information system is to permit users to 
enter and extract information ⎯ about entities. Most 

transactions between user and system require some means of 
designating the particular entity of interest. In order to design or 
evaluate the naming facilities of an information system, it helps 
to be aware of the variety of ways in which we designate things. 

How do we indicate a particular thing we want to talk about? 
Let me describe just a few of the ways I can think of: 

 
• You point your finger. By itself that’s generally 

ambiguous, unless there’s something in the context or 
conversation to indicate whether you are pointing to a 
button, a shirt, the man’s chest, the man, the horse and 
rider, or the whole regiment. 

 
Is this relevant? How about pointing a light pen at a 

display screen? If you are editing text, there has to be 
some way to establish whether you are erasing a letter, a 
word, a line, a sentence, a paragraph, or a letter (lovely 
ambiguity). 

 
• If it’s a person, you might use his name. Did I say 

“name”, in the singular? There are many different 
sequences of letters and punctuation that are 
recognizable as his “name”. There’s his full name (with 
or without Ms. or Dr. or Capt. in front and Jr. or II or 
MD or Ph.D. in back); you might omit his middle 
name(s), or use only initials for either his first or middle 
names, or use only his initials altogether (monogram); 
you might use a nickname, or just the initial of his 
nickname (I sometimes get memos addressed to B. 
Kent); you might address him only by his first name or 

T 
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nickname, or by his last name only; and in some cases 
you have to give his last name first. And then we have 
the curious custom of addressing married women by 
their husband’s names: Mrs. Henry Smith. 

 
These are all, of course, ambiguous. People’s names 

are generally non-unique. Whether you address a person 
by full name, first name, or nickname, there is always 
some chance that someone else will respond. We employ 
a variety of techniques and assumptions to insure that we 
are addressing the right person; sometimes they don’t 
work. A newspaper editor in France was the victim of an 
assassination plot aimed at a political figure with the 
same name. 

And what is the syntax of a person’s name? 
Certainly far more complex than first name, blank, last 
name. There may be periods, commas, blanks, hyphens, 
apostrophes (anything else?) in certain places (what are 
the rules?). A last name may have embedded blanks, and 
may not even start with a capital letter (van den Berg). 
With a name like that, do we always know where the 
split occurs between first, middle, and last names 
(especially if the name is printed in all capitals)? People 
can have any number of middle names. Is there any limit 
on the length of people’s names? 

 
• Notice that I started that last discussion with “if it’s a 

person”. In identifying something, a name may be 
meaningless unless you also establish the category of the 
thing. What does the name “Colt” identify? It might be a 
person, a gun, a car, a beer, a football player, or perhaps 
even a city or county somewhere. (Check an atlas?) Of 
course, I’m being a little careless here. “Colt” is not the 
name of one gun or one can of beer or one football 
player. And, if it’s not even clear that I am using a name, 
I might just be talking about a horse. 
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Sometimes you can’t tell whether an entity or a 
category is being named. Try asking an operator for the 
phone number of “The Restaurant” or “The Movie”. 

 
• A thing can have different kinds of names. A person 

might be identified by a social security number, 
employee number, membership number in various 
organizations, military service number, various account 
or policy numbers (strictly speaking, these latter don’t 
identify him, but something he’s related to; on the other 
hand, you might also say that about a social security 
number). A car might be identified by license number or 
by engine number. A department may have a name 
(Accounting) and a number (Z99). A book has a title, a 
Library of Congress number, an ISBN (International 
Standard Book Number), not to mention various Dewey 
decimal identifiers in local library catalogs. And each 
copy of a book may have an “accession number”, 
assigned locally by a library for their overall inventory 
management. 

 
So, to be complete, we may sometimes have to 

indicate the kind of identifier being used, in addition to 
the identifier itself and the category of the thing. Very 
often, but not always, the kind of identifier is implicitly 
understood (a social security number is generally 
recognizable by its format). Of course, in a data 
processing system, there has to be some convention for 
indicating which field in the record is to be matched. 

 
• You don’t always have all these options. Very often you 

have to know who you’re talking to; that will determine 
how you have to identify the thing being referenced. In 
addressing mail, you had better include the last name. 
For the IRS or a stockbroker, you might have to use 
social security number. The personnel file might only be 
keyed on employee numbers. If the personnel file can be 
addressed by name, there are probably some very 
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specialized rules, e.g., all capitals, last name first 
followed by a comma, truncate all names longer than 25 
characters, etc. To log on as a user of a teleprocessing 
system, you may have to present a special identifier 
assigned within that system. 

 
• You might even have a choice of several different names 

of the same “kind” for the same thing. A married woman 
often retains her maiden name for professional purposes. 
People have stage names, pen names, aliases, and 
sometimes several nicknames (Chuck and Charley). 

 
A person’s name may have several correct spellings, 

especially if it is transliterated from a foreign language. 
Look up the composer of “Swan Lake” in several 
catalogs. 

 
In Hawaii, last names are often so long that people 

just use the first few syllables. 
When a book is published or distributed by different 

publishers (perhaps in different countries), then the book 
may bear several International Standard Book Numbers 
(ISBN). [Douque] is an example. 

Vacuum tubes often have several numbers 
designating the same type of tube. 

If you will accept a phone number as the “name” of 
a telephone, then we include the possibility of several 
names for the same instrument. The phone may also 
respond to several “kinds” of names: outside numbers 
and internal extension numbers. 

Sometimes the alternative names (synonyms) can be 
predicted by a rule (algorithm) rather than requiring an 
explicit list. Many command systems allow the names of 
commands to be truncated from the right. Thus PR, PRI, 
and PRIN might all be recognized as synonyms for the 
command named PRINT, even if they aren’t explicitly 
listed anywhere in the system. 
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The term “synonym” sometimes refers to the 
existence of several kinds of names (e.g., employee 
number and social security number), and sometimes to 
the existence of several names of the same kind (e.g., a 
person’s aliases). 

 
• You might refer to someone or something by its 

relationship to another identified thing: Charley’s aunt, 
Harry’s car, the owner of a certain bank account or 
charge account. (How about “Mrs. Henry Smith”?) Such 
references may or may not be unique. 

• Or by the role currently being played by the thing: the 
mailman, the bus driver, the third baseman. 

• Or by its attributes: the red car, the highest-paid 
employee. 

• And certainly by combinations of these: the red car’s 
owner’s lawyer. Again, these references may or may not 
be unambiguous. 

• We often address a letter to a person when we really 
want to deal with his role (e.g., manager of a certain 
department). If someone else now has his job, we really 
want the matter handled by his replacement. 

• A name sometimes describes the thing being named. 
Sometimes it doesn’t. Main Street may or may not be the 
main street in town. It may not be a street at all 
(restaurant? clothing store? movie or book?). Does 
Scotch Tape come from Scotland? How many 
blackboards are black? 
When my daughters were very young, they had a toy 
they called “Blue Car”. It was a yellow donkey. (Or was 
it a toy, and not a donkey? Shall we debate whether the 
category of animals includes toys, pictures, statues, and 
other imitations of animals? Are you going to insist that 
the toy was not a donkey?) 

 
On television one night, the “8 O’Clock Movie” 

started at 7 o’clock. 
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And then of course there are code names, which are 
deliberately uninformative or even misleading. 

 
• Some names have embedded in them information about 

the thing being named. In some states, you can 
determine from a license plate the county in which it was 
issued, or the fact that the car belongs to a rental or 
leasing agency, or to a government agency. An account 
number often has the bank branch number included (this 
also relates to qualification ⎯ section 3.3.2). Prefixes 
very often have special meaning, as in the names of 
modules of computer programs. 

• When dealing with ambiguity, we sometimes employ a 
complex strategy of reducing the number of candidates 
to one. Sometimes it is a pre-established strategy, e.g., 
specify name and address, or name and date of birth. 
Sometimes we do it in dialog fashion: “Is this the John 
Smith who works for IBM?” “Yes, but there are three.” 
“Were you at the ACM meeting last week?” And so on. 

Some other strategies: 
 
- Take the first one encountered, according to 

some ordering. This is the common treatment of 
“non-unique keys”. Sometimes this ordering is 
determined by an ordering of “scopes” 
(discussed below), e.g., catalogs. 

- When things are versioned, default reference is 
to some “latest” version. 

 
Qualification is an especially important technique, 

which will be discussed later. 
 

• We also refer to things by pronouns (you, her, it, that), 
which depends on some convention to establish the 
object of reference. A common convention is to assume 
it to be a previously identified thing. This, too, has its 
counterpart in data processing systems. In IMS, for 
example, the “replace” function is assumed to refer to 
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the last record that had been retrieved (that’s accurate 
enough for this discussion; the precise rule is a bit more 
complex). 

• Sometimes we refer to something without knowing yet 
exactly which thing we are talking about. A mystery 
novel refers to “the murderer”; a contest announcement 
mentions “the winner”. This is analogous to using 
variables in algebra and in programming. (It also bears 
some resemblance to roles, and to pronouns. In the case 
of roles, we are less likely to care about which individual 
is actually playing the role than when we use variable 
reference. The distinction between variables and 
pronouns does not so readily come to mind.) 

• In programming, an important special case of reference 
by relationship involves some ordering. With respect to 
such an ordering, one can refer to the first item, or the 
last, the next, the third, etc. “Next” also involves 
pronoun reference, since it implies “next” relative to 
whatever item was last referenced. 
We make ordinal references to footnotes, bibliographies, 
pages, chapters, volumes, editions, etc. 

• In programming, “pointing” often means naming some 
location in the machine. It is something like pronoun 
reference (“that”) in that it involves some convention to 
establish what is being referenced, i.e., what is assumed 
to be at that location (both its nature and its extent: 
character, field, record, control block, etc.). 

 
Which of these phenomena shall we call “naming”? No 

answer. It doesn’t matter. 
Can we distinguish between naming and describing? 
On one hand there is a pure naming or identification 

phenomenon: a string of characters serves no other purpose than 
to indicate which thing is being referenced. On the other hand we 
have information about the attributes of a thing and its 
relationships to other things. Of course, the two overlap. 

There are very few “pure” identifiers, containing no 
information whatsoever about things. A person’s name suggests 
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possible relationships to other people; a first name can indicate a 
person’s sex; a name often conveys ethnic clues; it may suggest 
something about age or social status; in some forms, it may 
indicate profession, or level of education. 

The serial number of a part often implies something about 
the date or place of its manufacture, or something about the 
presence or absence of certain features. Vacuum tube numbers 
encode much information about electrical and mechanical 
specifications. An International Standard Book Number (ISBN) 
encodes publisher, author, title, and type of publication. 
 

3.2 What is Being Named? 
 

Which entity is being named? Consider telephones and 
telephone numbers (analogous to message handling in a message 
processing system). If, as before, we consider a phone number to 
be the name of a telephone, then: 

 
• a telephone may have several names (several numbers 

ringing the same phone); 
• a given number could ring several phones: the several 

extensions in your home, or the phones of a manager and 
his secretary; 

• phones can change names (numbers): the phone 
company replaces a defective telephone, or the phone 
company assigns new numbers, or you transfer your 
number when you move. 

 
Alternatively, we could invent a new abstract entity, e.g., a 

“message destination” (in teleprocessing systems, a “logical 
unit”). We then consider one phone number to be the name of 
one message destination, and we deal with a relationship 
between message destinations and telephones (in teleprocessing, 
logical units and physical units). This relationship could be 
many-to-many, and can be changed. And it now requires some 
method for identifying (naming) the physical telephones 
involved. 



55 

A familiar message again: you the observer are free to 
choose the way you apply concepts to obtain your working 
model of reality. 

 
3.3 Uniqueness, Scope, and Qualifiers 

 
Whether a name refers to one thing or many frequently 

depends on the set of candidates available to be referenced. This 
set of candidates comprises a “scope”, and it is often implicit in 
the environment in which the naming is done. A reference to 
“Harry” is often understood to mean the Harry present in the 
room. A letter addressed to Menlo Park (without naming the 
state) will probably be delivered in California if mailed on the 
West coast, and to New Jersey if mailed on the East coast. The 
boundaries of a scope, and the implicit default rules, are often 
fuzzy: I don’t know where the letter would go if it was mailed in 
Illinois. 

Qualification, the specification of additional terms in a 
name, is often used to resolve such ambiguities by making the 
intended scope more explicit. In this case, adding the state name 
would (partially) resolve the ambiguity. 

Scopes are often nested, and we often employ a mixed 
convention: a larger scope is left implicit, but a sub-scope within 
it is explicitly specified. This is partial qualification. There are 
cities named “San Jose” in Costa Rica and in the United States. 
Let’s imagine that the one in Costa Rica is within a “district” 
named California. Then the address “San Jose, California”, 
although qualified, is still ambiguous. Whether the letter gets to 
its intended destination depends on the “default scope” (i.e., 
country) implied by the point at which it is mailed. 

Even the city name is a scope, resolving the ambiguity of a 
street address ⎯ University Avenue exists in many cities. And 
the street name selects a scope of house numbers. A complete 
address is a whole chain of scope qualifiers. 

Telephone numbers provide familiar examples of 
qualification. A (7-digit) phone number is certainly not unique; it 
may exist within many different area codes. Here the boundaries 
of the scopes, and the default rules, are well defined. If you don’t 
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dial the area code, the destination is assumed to be within the 
area you are dialing from; otherwise you must dial the area code 
explicitly. Of course, this is again only an imperfect model of 
reality; I can reach many destinations in nearby area codes 
without dialing the area code. The first three digits of the seven-
digit number seem to imply something in relation to area codes. 

When dialing from an office phone, one often has to select 
first from a larger set of scopes: whether you want an outside 
line (dial 9), a “tie line” connection (dial 8), or a local extension 
(in some places, dial 6; in others, the default in the absence of an 
initial 9 or 8). 

Incidentally, phone numbers illustrate some kinds of 
anomalies that may occur in real naming conventions: 

 
• Different forms of names are valid within different 

scopes: for local extensions, they are four digits; for 
outside numbers, they are seven digits plus optional area 
code; a tie line number could have still another form. 

• Form and content (syntax and semantics) are mixed 
together. You can’t specify the naming rules independent 
of the numbers involved. Certain initial digits are 
reserved for certain functions. If the first digit you dial is 
zero, then you are addressing the operator, not selecting 
a scope (you could fudge that by confusing a scope with 
its single member). Certain three digit numbers are valid 
destinations, and not part of a seven-digit number (like 
411 for information). 

• The naming conventions can depend on the scope from 
which the naming is done: the phones at another location 
may have a different convention for getting outside lines, 
local extensions, etc. 

 
If you consider a company’s internal switchboard operator to 

be part of the addressing mechanism, then you could think of a 
very completely qualified name as consisting of a 9 for an 
outside line, an area code and seven digits, followed by a four 
digit office extension. Two points: 
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• If you think of the destination switchboard as another 
scope, then here again different scopes may accept 
different names: some companies have 3-digit 
extensions, some use four, etc. Furthermore, many kinds 
of names and descriptions are acceptable within the 
switchboard’s scope: extension numbers, people’s names 
or roles (“personnel manager, please”), names or 
descriptions of departments (“shipping, please”), etc. 

• The scope itself may have multiple synonymous 
names: the company may have several numbers that 
ring at its switchboard. 

To elaborate on an earlier point: the same thing might have 
different names when referenced from different scopes: 

• Phone numbers, as mentioned above. 
• Programs, files, etc. might be registered in different 

catalogs with different names (don’t know if any current 
systems support this). 

• Users of the IBM Virtual Machine Facility (VM) will 
recognize this: I can get access to the disk you call 191 
and call it 193 myself (when I have another disk which I 
call 191). 

In this case, the name does not go with the entity, but is an 
“attribute” of the relationship between the entity and the scope 
(i.e., it goes with the directory entry). 

 
3.3.1 Deliberate Non-Uniqueness 
 

Quite often, things don’t have individual unique names. This 
poses no problem when the things aren’t individually represented 
in the system. In the case of parts, for example, we have one 
named representative for a type of part; the existence of 
individual instances is reflected only in the “quantity on hand” 
attribute. 

Consider, however, something like a table of organization for 
a military unit. There may be several slots for clerks, with each 
slot having the same job description and skill requirements. We 
want them separately represented; they are the permanent entities 
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in this structure. One of the attributes (or relationships) we want 
to record for them is the name of the person currently holding the 
position. When the positions are vacant, the information 
associated with the entities is identical. When we want to address 
one of them, e.g., to assign someone to a job, it is sufficient to 
refer to “any one of the vacant clerk positions”. For this kind of 
information, the entities do not require unique identification. 

It is sometimes asserted that each entity represented in the 
system must have a unique identifier. I contend that this is a 
requirement imposed by a particular data model (and it may 
make many things easier to cope with), but it is not an inherent 
characteristic of information. 

 
3.3.2 Effective Qualification 
 

A scoping object does not have to have any intuitive 
connotations of “scope”. It need not be a physical region, or a 
catalog, or an area code. Quite often, the technique for giving 
something a unique qualified name is simply based on an 
arbitrary relationship to some other object. In effect, the scope 
becomes the set of things having a particular relationship to a 
particular object. 

Consider, for example, the naming of employees’ dependents 
by the two fields consisting of the employee identification 
number plus the dependent’s first name (the example is taken 
from [Chen]). In order for such a convention to be effective, a 
number of conditions must be satisfied. 

 
Uniqueness Within Qualifier 
 

The relationship must confer uniqueness of simple name 
within relative (i.e., the employee must not have two dependents 
with the same simple name). Curiously enough, even this might 
not hold for the given example. A pathological case would occur 
if the employee had several children with the same name (or is 
that in fact plausible with adopted children? or after 
remarriage?). More reasonably, his wife and daughter might have 
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the same name, or his father and son (and grandson, if he was an 
eligible dependent). 
 
Singularity of Qualifier 
 

The relationship does not actually have to be one-to-many 
for naming purposes, so long as the previous constraint on 
uniqueness holds for each relative. Thus a person could be a 
dependent of several employees, and still be uniquely 
identifiable, so long as no employee has two dependents with the 
same first name. 

However, this situation does give rise to synonyms: a given 
dependent could be identified by qualification by any of his 
related employees. This could lead to a number of problems, 
such as determining when two references to dependents were 
really references to the same person. And also: when a new 
employee lists his dependents, how shall we know if any of those 
dependents are already recorded as dependents of other 
employees? (Do we add new dependent records, or add 
synonyms to existing records?) 

To avoid such problems, one could require that the identifier 
have no synonyms. Then dependents could no longer be 
identified via their related employees ⎯ unless we wanted to 
deny the reality that a person might be a dependent of several 
employees. 

Another alternative is to require that one of the synonyms be 
designated the “primary” identifier, being the only one permitted 
to be used in referring to that dependent. With this constraint we 
lose usefulness and naturalness. How do we know which 
employee to use in referring to a dependent? If an employee asks 
me to add one of his dependents to some list, I first have to find 
out whether I might have to use some other employee’s number 
to form the dependent’s identifier. If I have to do that lookup in 
the dependent’s record, I might as well be getting some arbitrary 
identification number out of it instead of bothering with qualified 
names. And this convention doesn’t solve the problem of change. 
If a dependent’s “primary” employee leaves the company, and 
another relative still works there, then all references to the 
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dependent will have to be modified to reflect a different primary 
employee in his qualified name. 

 
Existence of Qualifier 
 
A qualifier must exist for each entity occurrence. Therefore the 
relationship must not be optional; each dependent must have a 
corresponding employee. If the benefits program were expanded, 
let’s say as a charitable community service, to cover needy 
people unrelated to any employee, then this system of entity 
identification would no longer work. 
 
Invariance of Qualifiers 
 

Such a relationship must really be invariant (unmodifiable). 
The relationship constitutes information that is redundantly 
scattered about everywhere that this entity is referenced, with the 
potential for enormous update anomalies if the information can 
change. (Qualified names thus violate the spirit, if not the letter, 
of relational third normal form [Codd 72], [Kent 73].) Even this 
requirement might not be satisfied by the example cited. For tax 
purposes, two married employees might wish to change which 
one of them claims which children as dependents; such a change 
would have to be propagated into the qualifiers in every single 
reference to those children. 

 
3.4 Scope of Naming Conventions 

 
The oil well problem: some oil wells, but not all, have “API” 

codes assigned by the American Petroleum Institute. Oil 
companies assign their own names to the wells they own, using 
their own conventions and formats. Some wells are jointly 
owned, with each owning company naming the well according to 
its own rules. 

In a database to be used for correlating data on all wells in 
some area, no single naming convention would apply to all the 
wells. The API code works for those wells that have them. 
Otherwise, you have to know who the owner is (or which 
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owner’s convention is being used, for jointly owned wells) 
before you know the applicable name format. When one 
company writes an application looking only at its own wells, it 
would like to see and use its own names. A second company’s 
application would like to see and use that company’s names, 
even when some of the same wells are involved. 

The common solution: develop a brand new naming system 
(keys) for all wells represented in the database. Now everybody 
has to learn a new set of names, and correlate them with the ones 
they already know. And the headache will recur when several 
such databases are integrated. 

(Lots of people don’t have social security numbers ⎯ such 
as the employees of a multi-national corporation.) 
 

3.5 Changing Names 
 

Names do change: people, streets, cities, nations, companies, 
divisions, departments, programs, files, projects, books, other 
publications. Part numbering systems change once in a while. 
Mistakes get corrected. 

In the references at the end of this book, SIGFIDET and 
SIGMOD are the old and new names of the same organization. 
Did you know that? 

How (and how long) do you detect and handle references to 
the old names? Is this similar to synonyms? 

The common solutions: either disallow name changes 
(pretend they don’t happen), or generate a new naming scheme 
for the data system and treat the other (changeable) names as 
attributes. The latter solution has a price, of course: increased 
space required for storing and indexing the additional names, 
learning and processing problems in dealing with new, 
“unnatural” names; possible loss of “key” facilities of some 
access methods (e.g., if secondary indexing weren’t available). 

Systems that depend on symbolic associations for paths (e.g., 
the relational model), as opposed to internal “unrepresented” 
paths between entities, cannot readily cope with changing names 
[Hall 76]. That is a fact; we might, however, debate whether it is 
a fault or a virtue. 
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When name changes are disallowed by the system, one can 
trick the system by deleting the entity, and then inserting it again 
as a “new” entity under its new name. Unfortunately, it is 
sometimes very difficult, if not impossible, to discover all the 
attributes and relationships associated with the old entity, so that 
they may be re-established for the new entity. And sometimes 
deletion and insertion might have undesirable semantic 
implications of their own, enforced by the system and perhaps 
unknown to the application that is trying to change a name. This 
technique for altering an employee’s identifier could enter a 
spurious firing and re-hiring into his employment history. 

 
3.6 Versions 

 
Quite often several versions of a thing are available, 

reflecting the status of the thing after various changes. The thing 
might be a document (e.g., various printings or editions of a 
book), a program, or a set of data records. (When data records 
are kept on magnetic tape, the traditional way to update the data 
is to rewrite it all to a new tape, incorporating the desired 
changes in the process. It is common practice to retain several 
“generations” of such tapes, for backup and error recovery 
purposes.) 

The central problem with the version concept is that we can’t 
decide whether we are dealing with one thing or several. “The 
payroll program” is a singular concept, and a command to 
execute it is implicitly understood to refer to “the current 
version”. On the other hand, one sometimes refers explicitly to 
an old version; for example, in order to reconstruct how a certain 
error occurred last month, one may want to rerun the version of 
the program that was current then. In this context, we are 
explicitly aware of the several versions as distinct entities, and 
have to specify the desired version as part of the naming process. 

 
 
 
 
 



63 

3.7 Names, Symbols, Representations 
 

What is a name but a symbol for an idea? What essential 
difference is there between “Kent” and “25” and “blue”, other 
than that they name different things? 

 
 

3.8 Why Separate Symbols and Things? 
 
3.8.1 Do Names “Represent”? 
 

In linguistics, a symbol is itself a representative of the thing 
it names. We have no choice; there isn’t anything else. In the 
conventional linguistic view of verbal communication (written 
and spoken), including our normal communications with 
computers, we have nothing else except character strings to 
represent the things we are communicating about. This leads 
some people to conclude that we must use such symbols as the 
representatives of entities. 

But in a modeling system, we do have an alternative. We can 
postulate the existence of some other kind of object inside a 
modeling system that acts as the representative (surrogate) for 
something outside the system. There “actually” is something in 
the system (a control block, an address in virtual memory, or 
some such computer-based construct) which can stand for a real 
thing. Once we’ve done that, we can talk about the symbols that 
name a thing separately from the representative of that thing. 

Does this have any counterpart in our own experiences? Do 
we ever use anything besides words for communicating? Do we 
ever use pictures? 

Consider the way we often use graph-like diagrams to 
supplement verbal communication, to help cope with synonyms 
and ambiguities in symbols. Even the authors who want us to use 
symbols exclusively use such diagrams in their own papers. Our 
thing object is essentially a node on a graph, before any label has 
been written in it. We can decide what that node stands for 
before we write any labels; we then have a variety of options for 
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choosing the label, and we may even change the label at various 
times. The same label might also occur on another node, but then 
we know it stands for something else. Or we might not write any 
label, because we can refer to it by its relationships to other 
nodes. But through all this, it is the node that has constantly been 
the representative of a certain thing, independent of the labeling 
considerations. 

This is not to say that we can do without character strings. 
They are absolutely indispensable in describing and referring to 
what is being represented and linked. What we have done is to 
shift the primary responsibility for representing things away 
from character strings and onto a system of objects and links. 
Then we use character strings for description and 
communication. This shift of responsibility gives us greater 
freedom in how we use the character strings, and helps us escape 
a multitude of problems rooted in the ambiguity and synonymity 
of symbols. 

This idea of taking the label out of the node, of treating an 
object separately from the various symbols with which it might 
be associated, should be exploited for a number of reasons: 

 
• We can cope with objects that have no names at all (at 

least in the sense of simple labels or identifiers). We can 
support other ways of referring to an object, e.g., via its 
relationships with other objects. 

• The separation permits symbol objects to be introduced 
and described (constrained) in the model, independent of 
the objects that they might name. One can thus introduce 
the syntax of data types, social security numbers, 
product codes, etc. (This is relevant to a certain level of 
information validation, independent of questions of 
implementation or internal representation.) 

• Naming rules can be expressed simply in the form of 
relationships between thing types and symbol types. 

• Other useful relationships might be expressed among 
symbols: synonyms, abbreviations, encodings, 
conversions. 
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• Various kinds of relationships might exist between 
things and strings: 
- Present name vs. past. 
- Legal name vs. pseudonym, alias, etc. 
- Maiden name vs. married name. 
- Primary name vs. synonym. 
- Name vs. description. 
- Which name (representation) is appropriate for 

which language (or other context). This could be 
useful in multi-lingual environments, such as the 
UN, the EEC, multinational corporations, and 
countries such as Canada, Switzerland, and Belgium. 

• The structures of names can be distinguished from the 
structure of an object. For example, a particular day, 
such as the day on which you were born, is a single 
concept, a single entity. Its names, however, come in 
various forms. Most of the conventional notations take 
three fields; in Julian notation, however, it occupies one 
field. (And something else to think about: is the 
representation of a date in years, months, and days really 
all that different from representing a length in miles, 
feet, and inches?) Thus we should generally avoid 
confusing the structure of an object with the structures of 
its names. 

• The separation permits differentiating between different 
types of names for a given thing, e.g., person name, 
employee number, social security number. Such types 
are themselves a normal part of the information structure 
available from the model. 

• By distinguishing sets of things from sets of signs, we 
can avoid confusing several kinds of assertions: 
- Assertions about real things: “every employee must 

be assigned to exactly one department”. 
- Assertions about signs: “a department code consists 

of a letter followed by two numbers”. 
- Assertions relating things and signs: “a department 

has exactly one department code and one department 
name”. 
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3.8.2 Simple Ambiguity 
 

“It all depends on what you mean by ambiguity.” 
We mustn’t neglect the plain and familiar ambiguities, which 

make their own large contribution to our communication 
confusion. Most words simply do have multiple meanings; we 
can’t escape that. Some comments and corollaries: 

 
• As evidence of the multiplicity of meanings, simply 

consider the average number of definitions per word in a 
dictionary. Then extend that to include all kinds of 
dictionaries, e.g., glossaries of specialized terms. Then 
add in the undocumented varieties of jargon used in 
various specialties. And include all the times a technical 
article begins by defining the terms it will use. And 
allow for variations in usage in different parts of the 
country, and in different countries. And slang, and 
metaphor. 

• Ambiguity appears to be inevitable, in an almost 
mathematical sense, if we consider the relative 
magnitudes of the set of concepts and the set of words. 
The set of concepts that might enter our minds appears 
to be quite infinite, especially if we count every shade of 
meaning, every nuance and interpolation, as a separate 
concept. On the other hand, the number of words of a 
reasonable length (say, less than 25 letters) which can be 
formed from a small finite alphabet is quite small in 
comparison. It seems inevitable that many of these 
words would have to be employed to express multiple 
concepts. 

• “...fuzziness, far from being a difficulty, is often a 
convenience, or even an essential, in communication and 
control processes. It might be noted that in ordinary 
human communications, the ability to stretch and modify 
word meanings is essential. There are many more 
situations occurring in life than we have ready-made tags 
for. Even so simple a word as ‘chair’ has all kinds of 
readily visible complexities in its use. It has ambiguity, 
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in that it has more than one distinct area of application 
(in addition to the usual, we have ‘Would the chair 
recognize my motion now?’ and ‘Would you like to chair 
this meeting?’). Vagueness (or fuzziness) is closely 
related to generality, the possibility of referring to more 
than one object. In fact, without generality, language 
would be almost impossible. Imagine if we had to give 
each chair a new proper name before we could talk about 
it! As far as ‘stretchiness’ is concerned, note that some 
people make a living designing objects they call ‘chairs’, 
but in which other people might sit with only the greatest 
reluctance. The concept of ‘chair’ is constantly evolving, 
in fact” [Goguen]. 

• The complexity of legal jargon testifies to the difficulty 
of being precise and unambiguous. 

• Observe the number of puns and jokes that depend on 
ambiguity (“walk this way”). 

• If you listen carefully, you will discover all kinds of 
ambiguities occurring continuously in your daily 
conversations. If you listen too carefully, it could drive 
you out of your mind. Consider: 
- When a receptionist directs you to “go through the 

same door as you did yesterday”, she refers to 
doorway, not the door. Would you care if carpenters 
had replaced the door in the meantime? Or the 
doorframe? 

- “Turn left at the second traffic light” means you 
should turn left at the second intersection that has 
traffic lights. The first such intersection probably has 
two traffic lights itself. 

• Why should we expect the language which describes a 
customer’s business to be any better understood or less 
ambiguous than the language which describes our own? 
Data theorists are ready to argue about any of the 
following words and phrases: data, database, data bank, 
database administrator, information system, data 
independence, record, field, file, user, end user, 
performance, navigation, simplicity, naturalness, entity, 
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logical, physical, model, attribute, relationship, relation, 
set, integrity, security, privacy, authorization, .... 

 
3.8.3 Surrogates, Internal Identifiers 
 

Some alternative models suggest that some sort of an 
internal construct be used to represent an entity, acting as a 
“surrogate” for it ([Hall 76]). This surrogate would occur in data 
structures wherever the entity is referenced, and naming 
problems would at least be isolated by keeping structured or 
ambiguous identifiers off to one side, outside the structures 
representing attributes and relationships. 

Since these surrogates must eventually be implemented 
inside the computer in some form of symbol string, it is 
sometimes held that such surrogates are themselves nothing but 
symbols. 

It is useful to be aware of some fundamental differences 
between surrogates and ordinary symbols: 

 
• A surrogate need not be exposed to users. Only ordinary 

symbols pass between user and system. In concept, 
models involving surrogates behave as though a fact 
(e.g., the assignment of an employee to a department) 
was treated in two stages. First, the surrogates 
corresponding to the employee and department 
identifiers are located (i.e., name resolution). Then the 
two surrogates are placed in association with each other, 
to represent the fact. 

• Users do not specify the format, syntax, structure, 
uniqueness rules, etc. for surrogates. 

• Surrogates are globally unique, and have the same 
format for all entities. The system does not have to know 
the entity type before knowing which entity is being 
referenced, or before knowing what the surrogate format 
will be. 

• Surrogates are purely information-free. They do not 
imply anything about any related entities, nor any kind 
of meaningful ordering. 
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• A surrogate is intended to be in one to one 
correspondence with some entity which it is 
representing. In contrast, the correspondence between 
symbols and entities is often many-to-many. 

• Surrogates are atomic, unstructured units. E.g., there is 
never a question concerning how many fields it 
occupies. 

 
3.9 Sameness (Equality) 

 
3.9.1 Tests 
 

A counterpart of the existence test of section 2.4 is the 
equality test. When shall two symbol occurrences be judged to 
refer to the same entity? (We mean “symbol” broadly in this 
context to include phrases, descriptions, qualified names, etc.) In 
general, different modes are applicable to different entity types. 
It is as much a specifiable characteristic as the naming 
conventions themselves. 

We can describe several kinds of equality tests: match, 
surrogate, list, and procedural. 

A match test is based on simple comparison between the 
symbols. They are judged to refer to the same entity if and only 
if the symbols themselves are the same (by whatever rule 
sameness is judged, with regard to, e.g., case, font, size, color, 
etc.). Addresses are typically treated in this way; any variation in 
the character sequence implies unequal addresses. 

In a surrogate test, each symbol is interpreted to refer to 
some surrogate object (e.g., a record occurrence). If both 
symbols refer to the same surrogate, the symbols are judged 
equal. (Following [Abrial]: “Equality always means identity of 
internal names.”) 

A list test involves a simple list of synonyms. E.g., they 
might indicate which color names are to be considered 
synonymous (crimson and vermilion might occur together in one 
company’s list, but not in another’s), or give the various forms of 
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abbreviation for a given term. If the two symbols occur in the 
same list, they are judged equal. 

A procedural test involves some other arbitrary procedure by 
which the two symbols are judged equal. These are most often 
performed in relation to numeric quantities. 

It is not generally acknowledged that equality tests for 
numeric quantities exhibit much the same characteristics as 
equality tests for non-numeric symbols. For numeric quantities, a 
number of factors are generally involved: 

 
• The quantities are more likely to be judged equal if they 

were initially named by the same “conventions”, i.e., 
measured and recorded with the same precision. 

• The quantities need to be “converted” into common units 
of measure, data types, representations, etc. These are, in 
effect, replacing the original symbols with procedurally 
determined synonyms. 

• Compare the two symbols. In many cases, the quantities 
only have to match within a certain tolerance (“fuzz”) to 
be judged equal. This is another procedure for 
recognizing synonymous symbols, effectively similar to 
explicit lists of synonyms (considering crimson and 
vermilion to be equal is really a form of fuzz; to some 
people the difference in those two colors is significant). 

 
There is certainly some interaction between the forms of the 

equality tests and the existence tests. Not all of the equality tests 
are applicable to entities subject to each of the existence tests. 

 
3.9.2 Failures 
 

When equality is based on symbol matching, several kinds 
of erroneous results can arise. 

 
• If things have aliases, then equality will not be detected 

if two different names for the same thing are compared. 
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• If symbols can be ambiguous (name several things), then 
spurious matches will occur. Different things will be 
judged to be the same, because their names match. 

 
(When qualified names are involved, another kind of 

spurious match can occur ⎯ see section 8.8.3.) 
These concerns are especially relevant when attempting to 

detect implicit relationships based on matching symbols. 
In general, when aliases are supported, we have to know: 
 
• When two symbols refer to the same thing. 
• Which symbol(s) to reply in answer to questions. 
• Whether use of a new symbol implies a new object or a 

new name for an existing object. 
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4 Relationships 
 

 
elationships are the stuff of which information is made. 
Just about everything in the information system looks like 

a relationship. 
A relationship is an association among several things, with 

that association having a particular significance. For brevity, I 
will refer to the significance of an association as its “reason”. 
There is an association between you and your car, for the reason 
that you own it. There’s an association between a teacher and a 
class, because he teaches it. There’s an association between a 
part and a warehouse, because the part is stored there. 

Relationships can be named, and for now we will treat the 
name as being a statement of the reason for the association 
(which means we will sometimes invent names which are whole 
phrases, such as “is-employed-by”). As usual, we have to be 
careful to avoid confusion between kinds and instances. We often 
say that “owns” is a relationship, but it is really a kind of 
relationship of which there are many instances: your ownership 
of your car, your ownership of your pencil, someone else’s 
ownership of his car. I will often (but not consistently) use the 
unqualified term “relationship” to mean a kind, and add the term 
“instance” if that’s what is meant. So, to be precise, our opening 
definition was of a relationship instance. A relationship then 
becomes a collection of such associations having the same 
reason. 

Note that the reason is an important part of the relationship. 
Just identifying the pair of objects involved is not enough; 
several different relationships can exist among the same objects. 
Thus, if the same person is your brother, your manager, and your 
teacher, these are instances of three different relationships 
between you and him. 

 

R
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4.1 Degree, Domain, and Role 
 

We have so far looked only at relationship instances 
involving two things. They can also be of higher “degree”. If a 
certain supplier ships a certain part to a certain warehouse, then 
that is an instance of a relationship of degree three. If that 
supplier uses a certain trucking company to ship that part to that 
warehouse, then we have a fourth degree relationship. 

We must distinguish between “degree” and a confusingly 
similar notion. If a department employs four people, we might 
view that as an association among five things. If another 
department employs two people, we have an association among 
three things, and we couldn’t say in general that the “employs” 
relationship has any particular degree. 

We proceed out of this dilemma in several steps. As a first 
approximation, think of a relationship (not an instance) as a 
pattern, given as a sequence of categories (e.g., departments and 
employees). An instance of such a relationship then includes one 
thing from each category (i.e., one department and one 
employee). The degree of such a relationship would then be the 
number of categories in the defining pattern. What we have done 
is to reduce the “employs” relationship from being an association 
between one department and all of its employees to being an 
association between one department and one of its employees. 
Although the former is certainly a legitimate relationship, it is 
difficult to subject it to any definitional discipline. We will only 
deal with relationships in the latter form. 

It is also possible to think of the relationship between a 
department and all its employees as a relationship between two 
things, where the second thing is the set of employees in the 
department. This introduces a new construct, namely the set of 
employees as a single object, and the relationship is now 
indirect: employees belong to the set, and the set is related to the 
department. We will not pursue this alternative. 

Specifying the pattern of a relationship as a sequence of 
categories is sometimes too restrictive. There are many 
relationships that permit several categories to occur at the same 
“position”, as is the case when one can “own” many kinds of 
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things. We therefore introduce the term “domain” to designate all 
the things that may occur at a given position in the relationship. 
A domain may include several categories. Thus we might 
describe an “owns” relationship as having two domains, with the 
first domain including such categories as employees, 
departments, and divisions, while the second domain included 
such categories as furniture, vehicles, stationery supplies, 
computers, etc. 

“Domain” and “category” could be treated as the same 
concept if (1) we are dealing with a system which permits 
overlapping categories, e.g., unions and subsets; (2) the system 
does not impose intolerable performance or storage penalties for 
maintaining many declared categories; and (3) it doesn’t bother 
our intuitions to think of all owners of things as a single kind of 
entity, and all owned things as another single kind. 

One final improvement in the specification of relationships 
makes the specification more informative and less formally 
structured. Instead of assigning a domain to a sequential position 
in a pattern, we can give it a unique “role” name describing its 
function in the relationship, such as “owner” and “owned”. Thus 
a relationship can be specified as an unordered set (rather than a 
sequential pattern) of unique role names. The number of role 
names is the degree of the relationship. A domain is specified for 
each role. 

Role names are especially useful when several roles draw 
from the same domain. A “manages” relationship would be 
defined over the roles “manager” and “managed”, both drawing 
from the domain of employees. 

 
4.2 Forms of Binary Relationships 

 
Much of the information in an information system is about 

relationships. However, most data models (e.g., the relational 
model, IMS hierarchies, DBTG networks) do not provide a 
direct way to describe such relationships, but provide instead a 
variety of representational techniques (record formats, data 
structures). Implicit in most of these, and in the accompanying 
restrictions in the data processing system, is the ability to support 
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some forms of relationships very well, some rather clumsily, and 
some not at all. 

In order to assess the capabilities of a data model, it would 
help to have some systematic understanding of the various forms 
of relationships that can occur in real information. In the next 
few paragraphs I will discuss some significant characteristics of 
relationships. A particular “form” of a relationship is then some 
combination of these characteristics. A method for assessing a 
data model would include a determination of which forms it 
supported well, poorly, or not at all. Note the emphasis on 
combinations. In most data models you can probably manage to 
find a way to obtain most of the following features, taken one at 
a time. The challenge is to support relationships having various 
combinations of these features. 

By “support”, I mean that 
 
• the system somehow permits a constraint to be asserted 

for the relationship (e.g., that it is one-to-many), and 
• the system thereafter enforces the constraint (e.g., will 

not allow the recording of an employee’s assignment to 
more than one department at a time). 

 
Such support is often implicit in the data structure (e.g., 

hierarchy), rather than being declared explicitly. 
The set of characteristics listed below is probably 

incomplete⎯I imagine it will always be possible to think of 
additional relevant criteria. For simplicity, we are now only 
considering “binary” relationships, i.e., those of degree two. 
Most of the concepts can be readily generalized to “n-ary” 
relationships (those of any degree). 

 
4.2.1 Complexity 
 

Relationships might be one-to-one (departments and 
managers, monogamous husbands and wives), one-to-many 
(departments and employees), or many-to-many (students and 
classes, parts and warehouses, parts assemblies). The 
relationship between employees and their current departments is 
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(typically) one-to-many, whereas the relationship between 
employees and all the departments they have worked in (as 
recorded in personnel history files) is many-to-many. 

Another way to characterize complexity is to describe each 
direction of the relationship separately as simple (mapping one 
element to one) or complex (mapping one element to many). The 
terms “singular” and “multiple” are also used. Thus “manager of 
department” is simple in both directions; “manager of employee” 
is simple in one direction and complex in the other. Relative to 
the number of “forms” of relationships, this would count as four 
possibilities, since a given relationship might be simple or 
complex in each direction. 

One advantage to this latter view is that it corresponds well 
with certain aspects of data extraction. Very often a relationship 
is being traversed in one direction (e.g., find the department of a 
given employee); the data processing system usually has to 
anticipate whether the result will contain one element or many 
(e.g., whether an employee might be in more than one 
department). The complexity of the reverse direction is of little 
concern (i.e., whether or not there are also other employees in 
the department). 

Thus, if a given direction is complex, it doesn’t matter much 
whether the relationship is 1:n or m:n. If the direction is simple, 
the distinction between n:1 and 1:1 may be immaterial. 

It’s amusing to note that the relationship between postal zip 
codes and states in the USA is almost many-to-one, so that the 
zip code directory is organized hierarchically as zip codes within 
states. The relationship is really many-to-many, but there are 
only about four zip codes that actually span state boundaries. The 
post office copes with that by listing the exceptions at the front 
of the directory. 

 
4.2.2 Category Constraints 
 

Either side of a binary relation might be constrained to a 
single category, constrained to any of several specified 
categories, or unconstrained (three possibilities on each side, for 
a total of nine combinations). Constraint to a single category is 
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probably the most common situation, as in the examples above 
under “Complexity”. 

Constraint to a set of categories occurs, for example, when a 
person can “own” things in several different categories, or when 
the owner might be a person, department, division, company, 
agency, or school. This case might be avoided by defining one 
new category as the union of the others ⎯ if you’re dealing with 
a data model which permits overlapping categories. 

It is hard to think of a relationship that is naturally 
unconstrained as to category (i.e., one that applies to every kind 
of thing), but it often makes sense to handle a relationship that 
way in a real data processing system. Perhaps the relationship 
does happen to apply to all of the things represented in this 
particular database, or to so many of them that it isn’t worth 
checking for the few exceptions. Perhaps the installation doesn’t 
want to incur the overhead of enforcing the constraint, and trusts 
the applications to assert only sensible relationships. Or, the 
system simply may not provide any mechanism for asserting and 
enforcing such constraints. 

 
4.2.3 Self-Relation 
 
Three possibilities: 
 

• The relationship is not meaningful between things in the 
same category. 

• Things in the same category may be so related, but a 
thing may not be related to itself. 

• Things may be related to themselves. 
 
The first case is again probably the most common. The 

second occurs, for example, in organization charts and parts 
assemblies. Examples of the third are our representatives in 
government (the representative is one of his own constituents), 
and canvassers for fund drives (the canvasser collects from 
himself). 
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Incidentally, I am thinking here of the simple case where 
categories are mutually exclusive. When categories overlap, as in 
subsets, things may be more complicated. 

 
4.2.4 Optionality 
 

On either side of the binary relationship, the relationship 
might be optional (not everybody is married) or mandatory 
(every employee must have a department). I will count this as 
four combinations (two possibilities on each side), although 
there could conceivably be more: one of the domains may 
include several categories, with the relationship being optional in 
some categories and mandatory in others. 

 
4.2.5 The Number of Forms 
 

Even with this limited list of characteristics, we already have 
432 forms (4 x 9 x 3 x 4). This number might include some 
symmetries, duplicates, and meaningless combinations, but after 
subtracting these we still have a sizable checklist. 

 
4.2.6 Multiplicity of Relationships 

 
Another important criterion concerns whether and how the 

system permits more than one relationship over the same pair of 
domains. The nature of the support often varies according to the 
forms of the relationships involved. 

 
4.2.7 Examples 
 

A sampling of a few forms and how they are handled in 
some data models. 

For instance: certain cases can only be implemented in IMS 
using logical relationships (intersection records), e.g., self 
relation, or multiple relationships over the same domains. These 
cases cannot also be constrained to be one-to-many relationships, 
since they are no longer part of a single hierarchic structure. 
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Consequently, that most elementary of structures, the 
homogeneous hierarchy (like an organization chart), cannot be 
represented in IMS (or DBTG, for similar reasons). 

Also, there is no way to enforce a one-to-one relationship in 
IMS, except by representing both entities within the same 
segment. Then it becomes difficult to change the relationship, or 
to make it optional ⎯ and you can’t have an application that 
looks at one entity without the other. 

Some systems (e.g., [IMS], [DBTG]) require 1:n 
relationships to have only a single category on the “parent” or 
“owner” side of the relationship. Consider a 1:n relationship that 
naturally has parents in several categories (e.g., suppose that 
items of capital equipment may be owned by departments or 
divisions, but not both). It is sometimes suggested that such a 
relationship can be modeled as the composition of several 1:n 
relationships, one for each parent category (e.g., one relationship 
for things owned by departments, and another for things owned 
by divisions). This doesn’t usually work, however, because it is 
difficult to prevent an item from having a parent in each of these 
relationships (i.e., that data structure would erroneously permit a 
piece of equipment to be owned by a department and a division 
at the same time). Furthermore, this approach creates an 
unnatural situation by replacing one natural relationship with two 
artificial ones. One can no longer ask “Who owns this 
equipment?” One now has to engage in a stilted dialogue: 
“Which department owns this equipment? None? Oh, then which 
division owns it?” 

 
4.3 Other Characteristics 

 
There are a number of other characteristics of relationships 

that might be worth describing to an information system. (We are 
still looking only at binary relationships.) 

 
4.3.1 Transitivity 
 

For some relationships, if X is related to Y and Y is related to 
Z, then X is automatically related to Z. This is true of ordering 
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relationships (less than, greater than) and equivalence 
relationships (equal to, has same manager as). This characteristic 
is only meaningful when both domains of the relationship 
include the same category. 
 
4.3.2 Symmetry 
 

For some relationships, X being related to Y implies that Y 
has the same relationship to X. This is true of equivalence 
relationships and also, for example, “is married to”. (In the latter 
case, both domains are “people”. The relationship “is the 
husband of” between the categories of men and women is not 
symmetric.) Again, symmetry is only meaningful when both 
domains include the same category. 

It’s worth confessing that purely symmetric relationships 
only fit awkwardly into this general structure of relationships. In 
the first place, the two roles (as well as the two domains) are 
identical. In the “is married to” relationship, the role on both 
sides is “spouse”, just as the domain on both sides was “people”. 
Thus we can no longer equate “degree” with the number of 
(distinct) roles. Also the “pattern” notion we used earlier doesn’t 
fit quite as neatly. That was based on a concept of ordered pairs, 
where each position had some significance. Here we are really 
dealing with unordered pairs; the information is identically the 
same no matter which way the pieces are ordered. Saying that A 
and B are married is identically the same as saying that B and A 
are married. Few systems really support symmetric relationships; 
any that do are likely to require both pairs to occur, even though 
they are redundant. 

Another difficulty is that the concept of “degree” is less 
clear. If the relationship is not limited to being between two 
people (and “sibling” isn’t), then we can’t really appeal to an 
intuitive notion of “pattern” to establish the notion of degree. 
The relationship might more naturally be viewed as one of 
varying degree, depending on the number of siblings in a given 
family. Nonetheless, we find it much more convenient to 
consider the relationships between people two at a time, and 
regularize this as a binary relationship. 
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4.3.3 Anti-symmetry 
 

For some relationships, if X is related to Y, then Y cannot 
have the same relationship to X. Examples include “is manager 
of”, “is parent of”, and total orderings. (“Less than or equal” is a 
partial ordering, which permits some symmetries; “less than” is 
a total ordering, which is anti-symmetric.) 
 
4.3.4 Implication (Composition) 
 

A relationship may be defined as the composition of two 
others, i.e., the occurrence of two relationships implies a third. 
For example, if an employee works for a certain department and 
that department is in a certain division, then that employee 
belongs to that division. Or, one relationship may imply another: 
“is the husband of” implies an “is the wife of” relationship. The 
converse implication may or may not hold. 
 
4.3.5 Consistency (Subset) 
 

A certain kind of consistency between relationships might be 
obtained by defining one to be a subset of another. For example, 
the relationship between employees and their current 
departments is a subset of the relationship between employees 
and all their departments, as recorded in the personnel history 
file. 

 
4.3.6 Restrictions 
 

A variety of restrictions might be specified (cf. [Eswaran], 
[Hammer]). There may be a limit on the number of things that 
one thing can be related to (maximum department size). One 
relationship might require another to be true (an employee’s 
manager must be in the same division, or must have a higher 
salary). It may be invalid to “close a path” (i.e., a part can’t be a 
component of any of its sub-assemblies). 
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4.3.7 Attributes and Relationships of Relationships 
 

An instance of a relationship might have attributes of its 
own, such as when it was established (date of assignment to 
department). And it can itself be related to other things. This will 
come up again later. 

 
4.3.8 Names 

 
Relationships have names, and could be subject to the 

general variety of naming conventions. 
The names of relationships comprise valid information. An 

information system should be able to answer questions like: 
• What relationships exist between x and y? 
• In what relationships is x involved? 

 
4.4 Naming Conventions 

 
I tend to use one convention for naming relationships, but 

there are several others in use as well, and each of them seems to 
be more natural in certain cases. The conventions involve the use 
of zero, one, or two names for the relationship. 
 
4.4.1 No Name 
 

If we are speaking of an employee and mention 
“department”, it can be recognized as a reference to the 
department to which the employee is assigned. 

The convention is that, from a given entity, one traverses a 
relationship (selects a path) by naming the domain at the other 
end. 

That works whenever (1) the relationship is binary, (2) the 
two domains are distinct, and (3) there is only one relationship 
between those two domains, or there is a convention for 
selecting one of them as a default. 

This convention could be viewed as a degenerate form of the 
two-name convention (below), where each path has a name 
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derived from the target domain. E.g., “department of” is the 
name of the path from employee to department. 

 
4.4.2 One Name 
 

The relationship may be given a single, neutral name such as 
“assignment” or “inventory”. If we want to find a person’s 
department, we ask about “assignment of person”; if we want to 
find the people in a department, we ask about “assignment of 
department”. 

This is a common convention, and one that I tend to use, but 
it doesn’t correspond well with most of our language habits; we 
usually tend to use different words for the two directions of the 
relationship. Furthermore, if the two domains are the same, then 
the convention only works if the role names are mentioned. 

This convention could include the no-name case, if a 
defaulting mechanism were provided whenever the relationship 
name was omitted. 

This convention is the one that extends best to n-ary 
relationships. Instead of getting involved with all the 
combinations of pairwise directions between the domains, one 
simply names the relationship and values in some set of 
domains, and expects as an answer all the combinations of 
values which exist with them in the other domains. For example, 
if a ternary relationship between parts, warehouses, and suppliers 
is given a single name such as INVENTORY, then questions can 
be written symmetrically using a form such as 

 
INVENTORY (PART=PIN, WAREHOUSE=WEST, 

SUPPLIER=?) 
or 
 

INVENTORY (SUPPLIER=?, PART=?, 
WAREHOUSE=WEST) 
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4.4.3 Two Names 
 

A binary relationship can be traversed in two directions, and 
each is sometimes given its own name. (The two directions are 
sometimes described as two distinct paths.) 

A hybrid between one and two names consists of the practice 
of giving the relationship one name, but requiring that it be 
modified in some way to indicate direction (e.g., by prefixing a 
minus sign for the direction considered to be “reverse”). 

This convention could eliminate the need for role names, but 
it does not extend well to n-ary relationships. 

 
4.5 Relationships and Instances Are Entities 

 
Instances of relationships are things themselves, about which 

we may have information in the system. 
They have attributes. Just as you have an age, so does your 

association with your department, your spouse, and your car. For 
a given part (type) stocked in a given warehouse, there is a 
certain quantity on hand. 

They can be related to other things. The storing of a certain 
part in a certain warehouse is approved by a certain manager. 

Instances of relationships can be related to each other 
(illustrated in section 10.2). 

Instances of a relationship can be identified (named) by 
identifying the relationship and the entities being related: 
“employed-in, John Jones, Accounting”. In real systems these 
composite names of instances are usually not represented 
explicitly, but are implied by the definition and organization of 
the records in a file. A record in an employee file will explicitly 
contain “John Jones” and “Accounting”; “employed-in” is 
implicitly understood by users of the file, or may be factored out 
into a file or record description somewhere. (Are there real 
examples where an instance of a relationship has a single simple 
name of its own, rather than a composite name?) 
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4.6 “Computed” Relationships 
 

We’ve talked so far about relationships that get established 
and broken, which we might naturally visualize in terms of links 
between objects. 

There are other kinds. Some are permanent, and are detected 
by some sort of computational process rather than by traversing 
links. And there is an enormous number of non-permanent 
relationships that are not represented by direct links either. 

Every computable procedure represents relationships 
between its inputs and its outputs. The correspondences between 
angles and their sines can be computed, and so can the 
correspondences between diameters and areas of circles. 

Perhaps the simplest such “computed” relationships are the 
orderings. The fact that one employee earns more than another 
(clearly a relationship between the two) is determined by 
performing comparisons, not by traversing links. We aren’t going 
to think in terms of explicit links between each employee and 
everyone who earns more than he does. 

We might be tempted to dismiss computed relationships as 
an essentially different kind of phenomenon. After all, why 
should we get all tangled up between linkages and 
computations? They just don’t feel like the same sort of thing at 
all. But consider: 

 
• The way we talk about the two is not all that different: 

“list all the employees who are assigned to this 
department”, and “list all the departments which have 
smaller budgets than this department”. 

• We’re never quite sure that there really aren’t explicit 
links lurking under the covers. Sometimes there really 
are tables that get looked up, instead of performing 
computations. Do trig tables, log tables, tax tables, etc. 
look all that different from intersection records? 

 
Another kind of non-explicit relationship exists in enormous 

quantities. These are all the implied, computed, compound, 
composite, derived (I use these all synonymously for the 



87 

moment) relationships which arise out of the existence of other 
relationships. We can’t avoid them. As soon as any two things 
are each related in any way to a third thing in common, they 
have some relationship to each other. Some of these are 
meaningful and interesting to us, others are not. If your father 
and my brother are the same person, then I am your uncle. If 
your birthdate and mine are the same, we are of the same age. If 
your were born on the same date that I visited my grandmother, 
then that too is a relationship ⎯ but who cares. (But then, who 
cares that we are the same age? Both relationships are there, 
whether we care or not.) 

If some such relationships are of special interest to us, then it 
makes sense to name them, and to define how they arise. We can 
define “in-law” as an appropriate composition of “spouse” and 
“sibling”. 

Now we have relationships which are not necessarily 
permanent ⎯ they can be established and broken ⎯ but they are 
not represented by direct links. 

And then there’s another thing that can happen: we might not 
be sure which were the “direct” relationships and which were the 
“derived” ones. Then all we can do is to define all of them as 
direct links, with appropriate specifications of derivation and 
consistency. Consider this: we always tend to think of “uncle” as 
derived from “father” and “brother” ⎯ but sometimes the only 
thing we know about two people is that one is the uncle of the 
other. We don’t know yet who their common relative is (we 
might or might not care), but we’d like to record their 
relationship directly. On the other hand, if we know that other 
people have a common brother and father, then we want “uncle” 
derived for us. And when a whole bunch of such relationships 
might be asserted, we might like the system to perform some 
reasonableness checks for us. 

Ideally, we shouldn’t have to know much about the way 
relationships are represented internally, as long as we have a 
name to refer to them with. However (and you knew there was 
going to be a however), certain differences in behavioral 
characteristics are likely to be visible. 
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• The relationship might not be modifiable. Depending on 
the implementation, you may or may not be able to say 
“change the cosine of ninety degrees to .12345”. 

• The number of instances might not be finite. It might not 
be possible to list all instances. 

• The instances might not be able to have attributes of 
their own, or be related to other things (except perhaps 
via other computations). 

• They might not be bi-directional. Procedures might not 
be provided for following the reverse direction. 

 
Such behavioral characteristics of relationships ought to be 

describable in an information model. 
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5 Attributes 
 
 

5.1 Some Ambiguities 
 
ots of things have lots of attributes. People have heights 
and birthdays and children, my car is blue, and New York 

is crowded. Much of the information in an information system 
records the attributes of things. 

But as common as the term “attribute” may be, I don’t know 
what it means. The fact that I’ve been using the term is totally 
irrelevant. 

The term is used to mean different things at different times, 
and I have trouble distinguishing the idea from others we’ve 
already discussed. Don’t be fooled by the fact that I can rattle off 
a few examples. As you’ll see later on, I really think they are 
examples of something else. 

There are several ambiguities in the way the term is used. In 
order to explain that without getting tangled up in other 
ambiguities, let me temporarily introduce three new terms, so 
that we can get a better handle on what we’re talking about. 
Every attribute has a subject: what it is an attribute of. People, 
my car, and New York were the subjects of the attributes in the 
examples above. Then there are targets, which are at the other 
end of the attribute, such as heights, blue, and crowded. Thirdly, 
there are links between subjects and targets. In the last example, 
it isn’t “New York” or “crowded” which are important in 
themselves; what is being expressed is a connection between the 
two: New York is crowded. 

(Later I’ll show that the three new terms are quite imperfect. 
They still retain two ambiguities: type vs. instance, and thing vs. 
symbol.) 

First ambiguity: “attribute” sometimes means the target, and 
sometimes the link. “Blue”, “salary”, “height” are sometimes 
referred to as attributes. On the other hand, “color of car” and 
“height of person” are also sometimes called attributes. If you 
don’t make the distinction, you get trapped into believing that a 

L 
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single construct can represent the idea of “blue” and the set of all 
things that are blue. If you do make the distinction, then you had 
better use the term very carefully. About half the people you 
meet will use it in the opposite sense from you. 

I tend to favor using the term “attribute” in the sense of the 
link itself, between the subject and the target. But I’m not sure I 
am always consistent in my usage (or that anyone else is). 

The second ambiguity has to do with type and instance, and 
my new terms haven’t helped that ambiguity one bit. Some 
people say that “blue” (or “my car is blue”) is an attribute. 
Others will say that the attributes in this case are “color” (or 
“color of car”), and that the first two things were “values” (or 
instances, or occurrences) of the attribute. I have no preference. I 
tend to use the terms carelessly in either sense. Other people are 
sometimes careful to define the sense they intend, and sometimes 
they aren’t. 

The third ambiguity has to do with thing and symbol, and 
my new terms didn’t help in this respect either. When I explore 
some definitions of the target part of an attribute, I get the 
impression (which I can’t verify from the definitions given!) that 
the authors are referring to the representations, e.g., the actual 
four letter sequence “b-l-u-e”, or to the specific character 
sequence “6 feet”. (Terms like “value”, or “data item”, occur in 
these definitions, without adequate further definition.) If I were 
to take that literally, then expressing my height as “72 inches” 
would be to express a different attribute from “six feet”, since 
the “value” (?) or “data item” (?) is different. And a German 
describing my car as “blau”, or a Frenchman calling it “bleu”, 
would be expressing a different attribute from “my car is blue”. 
Maybe the authors don’t really mean that; maybe they really are 
willing to think of my height as the space between two points, to 
which many symbols might correspond as representations. But I 
can’t be sure what they intend. 

To summarize: any of the following might be an example 
fitting the concept of “attribute”, although each exemplifies a 
different thing: 
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• The concept of color. 
• The concept of blue. 
• One of the character strings “blue”, “bleu”, “blau”, etc. 
• The general observation that cars have colors. 
• The fact that my car is blue. 
Perhaps these ambiguities can be resolved with some careful 

definitions, and some authors do make a commendable effort. 
Most definitional efforts I’ve seen, however, leave other crucial 
terms undefined or ambiguous, so that we don’t really have a 
working basis for applying the concept. 

 
5.2 Attribute vs. Relationship 

 
I’m really not very concerned about the ambiguities. For me, 

these problems are overshadowed by a larger concern. I don’t 
know why we should define “attribute” as a separate construct at 
all. I can’t tell the difference between attributes and 
relationships. (The astute reader may have noticed that I have, in 
two earlier comments, identified both attributes and relationships 
as constituting the bulk of the information managed in the 
system.) 

The fact that “Henry Jones works in Accounting” has the 
same structure as the fact that “Henry Jones weighs 175 
pounds”. “175 pounds” appears to be the name of an entity in the 
category of “weights” just as much as “Accounting” is the name 
of an entity in the category of “departments.” Both facts are 
relationships between entities. Both facts (relationships) are 
capable of themselves having attributes: Henry Jones has worked 
in Accounting since 1970; Henry Jones has weighed 175 pounds 
since 1970. Both facts are answers to a symmetric set of 
questions: 

 
• Where does Henry Jones work? 
• How much does Henry Jones weigh? 
• Who works in Accounting? 
• Who weighs 175 pounds? 
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Both facts can be “traversed” in symmetric fashion to answer 
questions like: 

 
• Who works in the same department as Henry Jones? 
• Who has the same weight as Henry Jones? 
 
Sundgren tries to make the distinction on the basis of 

whether the target is an object in the system ⎯ without defining 
what that means: “At any point of time every object in [the 
system] S possesses a set of properties. Some of the properties of 
an object are local, i.e., they are independent of the existence and 
properties of other objects in S. Other properties of an object are 
relational, i.e., they depend upon the object’s relations to other 
objects in S” [Sundgren 74]. Then he confesses, in the ensuing 
discussion, that “...there are no formal criteria. However, I am 
convinced that useful informal rules of thumb can be given. 
Moreover, it is my experience that it is not a big problem for the 
user to make a satisfactory intuitive distinction between objects 
and properties.” 

Berild and Nachmens write: “We store information about 
objects ... of two kinds, namely attributes of an object and an 
object’s relations to other objects. Note that this distinction 
between attributes and relations is only of logical interest, as 
both attributes and relations are stored as associations ...” 
[Berild]. 

There really does always seem to be an entity lurking behind 
the scenes somewhere, to which there separately corresponds an 
assortment of symbols exhibiting ambiguity and/or synonyms. 
We just have to learn to think of them properly. To accept the 
equivalence between attributes and relationships, we may have 
to acquire new habits of thought. My height really is not the 
string of characters “6 feet”. A height (or other length) is a 
certain interval in space (any good reason not to think of it as an 
entity?); its measurement can be written down in many ways. A 
day is just that ⎯ a day on which you can think of something as 
having happened; there’s a large assortment of ways to write the 
dates that are the names of that day. A color is something which 
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you can see, and maybe has a definition in terms of light wave 
frequencies; it is not the word “blue”. 

Even with numbers, we have to distinguish between the 
abstract quantity and the various symbols that might represent it. 
When it comes to measured quantities, there are really two steps 
from entity to symbol: 

 
1. From entity to abstract number, via a unit of measure. A 

unit of measure establishes relationships between mass 
entities and abstract numbers. The rule named “yards” 
maps my height into a number that is the same as the 
number of hands I have (which was mapped by a 
“count” relationship). 

2. From abstract number to symbol, via data type, 
precision, base, notational system, etc. The symbol for 
my height in yards is “2” in decimal integers, “10” in 
binary integers, “II” in Roman numerals, and “two” in 
English words. 

 
The target of an attribute is rarely a symbol directly. There is 

almost always a target entity distinct from the symbols. There are 
some notable exceptions to this rule, but then I wouldn’t call the 
phenomenon an “attribute”. If the target is really a pure symbol, 
then I prefer to call this “naming” and deal with it in another 
chapter. (It’s confusing. Some people do prefer to say that name, 
employee number, and social security number are “attributes” of 
people. It’s perfectly good jargon, but it does get some 
underlying distinctions muddled.) 

In real practice, of course, dates, heights, managers, 
departments, etc. do get treated in diverse ways. But rather than 
classifying that in terms of attributes vs. relationships, I think it 
is more helpful to distinguish them on the basis of the kinds of 
existence (and equality) tests employed for the entities involved. 

Incidentally, I do share with you the intuitive inclination to 
distinguish between relationships and attributes. For some facts 
the term “attribute” seems appropriate, and others seem to be 
“relationships”. It’s just that I can’t find any really objective 
distinguishing criteria to support my intuitions consistently. 
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Sometimes some of us might subconsciously picture it in 
terms of data records. If a fact is pictured just as a value in a 
field, we are inclined to call it an attribute, but if it has the effect 
of linking two records together, then it’s a relationship. But that’s 
an unsatisfactory basis for defining the distinction. First of all, 
we can conjure up many examples running counter to our 
intuitions. Secondly, the same fact can be represented inside the 
machine either way at various times. We want to define our basic 
information constructs in real world terms; the implementation in 
data processing mechanisms comes after we model the 
enterprise, not before. 

Let me suggest a way to satisfy our intuitions. Let us build a 
modeling system that only supports one basic linking 
convention, which we are free to call either “attribute” or 
“relationship”. The terms will be synonymous; we can use 
whichever one feels better at the moment. 

If such a system doesn’t satisfy you, I hope that you will tell 
me exactly what the system should do differently when it sees 
the terms “attribute” and “relationship”. 

 
5.3 Are Attributes Entities? 

 
If one really wanted to develop a rigorous notion of 

attributes (which I don’t), then this is another nasty question to 
be faced. Intuitively, some might say that attributes aren’t 
themselves entities (regardless of whether one had in mind the 
links or the targets). 

But if you think that relationships are entities, and you can’t 
distinguish attributes from relationships, then where are you left? 

And again: do you think that the subject of an attribute is 
necessarily an entity? I’m inclined to think so. But it turns out 
that some attributes are themselves the subjects of other 
attributes (which would make them entities after all). Examine 
carefully the structure of the following information, which is 
likely to be found in some databases: 



95 

• The percentage of an object’s surface which is a given 
color. 

• The date an employee began receiving a certain salary. 
• The ages of an employee’s children. 
 
Those appear to be attributes of attributes. 
And what about dates? They could have attributes, like day 

of week, or scheduled events. An illustration in [Sharman 75] 
shows a relation whose columns are month, day of month, and 
day of week. 

 
5.4 Attribute vs. Category 

 
We can say something is a car, and we can say that 

something is red. Intuitively, I feel that the first assertion is about 
the intrinsic nature of the thing (hence, its category), while the 
second asserts additional information about its characteristics 
(i.e., attributes). At one time I wanted to believe in a definable 
difference between category and attribute, but I didn’t know how 
to articulate it. Some assertions fall in a middle ground (“that is 
an employee”), diminishing hopes for an effective distinction. 

I’ve abandoned my hope of defining that distinction, too. 
 

5.5 Options 
 

In the area of attributes, just as with the other topics, we can 
apply the constructs to the data in a number of arbitrary ways, all 
of which make some sense to some people some time. 

We can refine the structure of attributes to varying degrees. 
We tend to treat hair color as an attribute of a person, although a 
strict rendition perceives that color is an attribute of hair, which 
in turn is an entity related to a person. So also with date of hire, 
which is really the “starting time” attribute of the relationship 
between an employee and employer. We are often inconsistent, 
letting date of hire be an attribute of a person in the employee 
file, while treating it as the attribute of a relationship in the 
employment history file. 
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It sometimes makes sense to say that all colored things draw 
their attribute values from the same “domain”. On the other 
hand, hair colors and car colors may not have many values in 
common. The list for the existence test may be different in the 
two cases! 

A given set of things might be treated as the names of 
distinct fields (attributes?), or as the set of allowable values for a 
single field. We have all seen two kinds of forms for indicating, 
e.g., marital status. One has a heading “marital status”, under 
which you are expected to fill in “married”, “single”, etc. The 
other kind has “married”, “single”, etc. as headings under which 
you are expected to make some mark (in this case the field 
values correspond to yes/no). 

The same phenomenon might be an attribute, a 
categorization, or a relationship. Consider a person employed by 
a certain company: 

 
• In a banking database in which companies are “non-

entities”, a person’s employer is simply an attribute of 
the customer. 

• In that company’s database, that person falls in the 
category of “employees”. 

• In a more generalized database, “employed by” may be 
just one of several possible relationships between people 
and companies. Others might be “stockholder of”, “sells 
to”, “is covered by benefits of”, etc. 

 
And the view of the phenomenon will often change with 

time. That is, different perspectives become appropriate as the 
information processing needs of an enterprise change, and as the 
scope of interest changes. 

Examples: 
 
• If the databases of several companies are merged (e.g., 

for more efficient payroll processing), then the 
“employee” entity becomes a “person” entity with an 
explicit relationship to his company. 
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• Then, also, date of hire changes from an attribute of an 
employee to being an attribute of the relationship 
between person and company. 

• When a company starts automating its personnel history 
records, the relationship between employee and 
department changes from 1:n to m:n. 

• “Address” changes from a simple attribute to a complex 
one when residence histories are kept. 

• Instead of address being an attribute of a person, it could 
become an attribute of a “place” entity. A “resides” 
relationship could be introduced between people and 
places. 

• Some states generalize a driver’s license into a general-
purpose identity card. Then the attribute “is licensed to 
drive”, which was implied for all cardholders in the old 
construct, now must be made an explicit attribute. 
Something similar probably happens when social 
security numbers are extended to serve as taxpayer 
identification numbers; it may no longer be true that a 
social security account exists for each of these numbers. 

 
5.6 Conclusion 

 
I will not formally distinguish between attributes and 

relationships, or between those two and categories. Even so, I do 
continue to use the terms “attribute” and “category” when they 
seem more natural, but I won’t be able to say why they feel more 
natural at the time. Most likely, it will correlate well with my 
implicit assumptions about the existence tests for the entities 
involved. 
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6 Types and Categories and Sets 
 
 

6.1 “Type”: A Merging of Ideas 
 

 
hree ideas seem to have gotten combined: 
 

• The urge to classify things according to “what they are”. 
• A need to express the semantic characteristics of things, 

by specifying which attributes and relationships and 
names are relevant and valid for them. The easiest 
paradigm: certain rules and constraints apply to certain 
classes of things. 

• A tradition of data description, based on record types. 
These often tend to be identified as the same 
phenomena. As a result, the concepts of “entity type” 
and “record type” are held to coincide. And they are 
often considered to represent a special kind of 
information, somehow distinct from other kinds. 
 

6.1.1 Guidelines 
 

One common denominator is the notion of grouping. We 
assume that things can be divided up into groups, where the 
groups are expected to satisfy a number of guidelines: 

 
1. The groups correspond to our intuitive ideas of what 

things are, i.e., classification. 
2. The groups serve as the scopes over which naming 

conventions apply. E.g., name syntaxes, uniqueness 
rules. 

3. The groups serve as the scopes over which validity 
constraints apply. 

4. The groups correspond to the domains of relationships. 
5. Things don’t move from one group to another. 

T 
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6. The groups are mutually exclusive (nothing belongs to 
more than one such group) ⎯ an enormously bad 
hangover from the record type heritage, but still required 
in almost all definitions. 

 
In any discussion of “type”, it would be useful to establish 

which of these guidelines were to be assumed. 
 

6.1.2 Conflicts 
 

Unfortunately, these guidelines are generally quite 
incompatible. 

As we’ve already seen, notions of “entity categorization” are 
very variable, subjective, and dependent on local purpose. We 
have “categories” for which naming conventions aren’t 
uniformly applicable, for which attributes aren’t universally 
applicable. 

Some people don’t have social security numbers; some don’t 
have maiden names. If a category is defined to be the union of 
several sub-categories, a rule for one sub-category may not apply 
to another. Further, we may not want to formally define sub-
categories corresponding to the scope of every rule, e.g., just for 
married female employees. 

Books may have “International Standard Book Numbers” 
(ISBN) and Library of Congress numbers. Some books have 
both, some have neither, some have one or the other. The 
category of things covered by Library of Congress numbers 
includes photographs, movies, tapes, recordings, etc. Those don’t 
get ISBN’s. 

Record types are probably the only concept to which the 
guideline of being mutually exclusive is applicable. 

I would speculate that for each pair of guidelines in the list 
above, we could find some example that brought the two into 
conflict. 
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6.2 Extended Concepts 
 
6.2.1 Arbitrary Sets 
 

Consider arbitrary groupings: sets defined in terms of things 
satisfying certain predicates, e.g., having certain relationships to 
certain things, or Boolean combinations of such conditions. Such 
conditions could be based on attribute values, relationships to 
other things, names, etc. It’s not clear why “type” is a different 
idea from these, or which of these is to be thought of as “type”. 
There are some good reasons not to make type quite so distinct. 

For example, there should be some way to present categories 
as properties (e.g., field values) to applications. E.g., if someone 
is both an employee and a stockholder, then 

 
• An application dealing with stockholder records should 

be able to see employer name as a field value, and 
• An application dealing with employee records should be 

able to see a field indicating stockholder status. 
 
Conversely, properties may be used to define “apparent” 

categories to applications, probably as subsets of “real” 
categories. For example, a new application may want to deal 
with a file of managers (perhaps with department records also 
occurring in the file). “Manager” appears to be the category (i.e., 
file name or record type) to the application, but it is defined to 
the system as that subset of the “employees” category which has 
“manager” as the value of the “job” attribute. 

 
6.2.2 General Constraints 
 

We haven’t lost sight of the original objective, namely to be 
able to specify rules about “groups” of things. But now the 
groups need not be so explicit; we can speak in terms of how 
we’ll recognize the individuals to which the rules apply. Rules 
and constraints can be generalized to the form: “the following 
rule applies to all things satisfying a certain predicate”, where 
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the predicate might be “all things having relationship X to object 
Y”. For traditionalists, X might be “has type” and Y could be 
“employee”. For set theorists, X would be “is member” and Y 
would be “employees”. For others, X might be “is employed” 
and Y might be “IBM”. 

It is thus a matter of viewpoint as to whether the 
fundamental constructs involved here are sets and membership 
or entities and relationships. 

This general form solves the “partial applicability” problem: 
we can specify that “maiden name” is applicable to all things 
which are employees of IBM and which are of the female sex 
and which have been married. 

Some of the rules might govern the interaction of the sets 
themselves: two sets may not overlap (equivalently: if one 
relationship holds for a given entity than another relationship 
can’t, and vice versa); one set may be a subset of another (the 
defining relationship of one implies the other), and so on. 

In making types non-exclusive, we come closer to reality ⎯ 
and suffer the penalty of facing more of the complexities of real 
life. We now have to deal with the interaction of rules that apply 
to overlapping sets. Sometimes they can get inconsistent: 
employees might be required to do something stockholders are 
forbidden to do. It would take some complex analysis to insure 
that a large set of specified constraints was entirely consistent. 
But saying that this is a disadvantage of overlapping types is the 
view of the ostrich. Exclusive sets don’t solve the problem; they 
avoid it by pretending that employees and stockholders don’t 
overlap. 

Problems of overlap and consistency can even occur with 
respect to specifying existence and equality tests. This can arise 
when there is an overlap of “types”, where some members have 
explicit surrogates and some don’t. Consider a personnel 
database that has explicit surrogates (records) for employees, but 
not for dependents. This is fine so long as we are willing to treat 
employees and dependents as disjoint categories. But suppose 
we needed to know which dependents are also employees? 
Dependents are usually listed by name only, and that is not an 
unambiguous key to the employee file. An employee might have 
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the same name as someone else’s dependent (or his own son!). 
Various solutions can be devised, none of them elegant. 

The same situation can occur in a banking database, in which 
a client’s employer might be a simple attribute (field value). The 
bank may want to be able to determine whether a client’s 
employer was itself a client of the bank. 

 
6.2.3 Types, If You Want Them 
 

Given a general mechanism for describing sets, one can try 
to superimpose a notion of “type” by imposing rules such as 
these: 

 
• Some sets confer naming rules on their members. 
• Every object must “belong” to at least one such set 

(which means that the object has the required 
relationships to appropriate objects). 

• Once a member of such a set, the object may not leave 
the set, except when the object is deleted from the 
system. 

• Such sets could be called “types”, but underneath it all 
they are still ordinary sets. 

 
If that doesn’t satisfy your notion of type, just vary the rules 

to suit yourself. Then compare notes with your neighbor. 
 

6.3 Sets 
 
6.3.1 Sets and Attributes 
 

Be cautious in equating sets with attributes (this bears on the 
ambiguities mentioned in chapter 5). For example, we might 
have an object representing the set of employees in the 
aggregate, and an object representing the concept of “employee” 
⎯ and then be tempted to say they are the same object. We 
might have observed apparent redundancies. Certain patterns of 
relationships occur in parallel with the two objects: a person has 
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the attribute of being an “employee” if and only if he is a 
member of the set of employees. So why keep them apart? 

The difficulty is that the concept of “employee” determines 
more than one set. The set I had in mind consisted of people who 
are currently employees. (That’s what you had in mind too, isn’t 
it?) But people can be related to the concept in many ways. 
There are people who have been employees, or are eligible to 
become, or have applied to be, or have pretended to be, or 
refused to be, and so on, together with various combinations of 
these sets which yield new sets. For other kinds of concepts, 
other relationships might also be relevant, such as “partly”, or 
“almost”, or “occasionally”. 

A set is determined by a predicate, whose minimal form 
involves a relationship to an object: the set of things having 
relationship X to object Y. One should not presume that the 
object Y determines a single set. 

 
6.3.2 Type vs. Population (Intension vs. Extension) 
 

A “type” is sometimes referred to as a set of occurrences 
(e.g., the type “employee” consists of the set of employees). This 
is all right as an informal concept, but several precautions ought 
to be observed [Durchholz]. 

There are two distinct notions of “set” involved here. There 
is the abstract idea of what the type is (e.g., the idea of 
“employee”), and the current population of people who happen 
to be employees at the moment. The former is the “intension” of 
the set, and the latter is its “extension”. The latter tends to 
change often (as people get hired and fired), but the former 
doesn’t. 

Very simply, a “type” corresponds to the intension of a set, 
not its extension. The concept of “employee” isn’t altered by 
hiring and firing people. 

Incidentally, one ought to be very cautious about claims of 
various models being based on “the axioms of traditional set 
theory”. That set theory deals entirely with extensional sets: a set 
is determined entirely by its population. There is simply no 
notion of a set with changing population; each different 
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population constitutes a different set. So, the relevance of such 
set theory to any model of data processing is, at the very least, 
questionable. 

Another caution has to do with emptiness. The concept of 
“employee” continues to exist even if there are no employees. 
One oughtn’t think that the concept has disappeared just because 
no space is occupied by employee records. 

Again, this simply amounts to distinguishing the intension 
and extension of the set. And, to those familiar with set theory, it 
corresponds to the existence of an empty set (i.e., the set, though 
empty, does itself exist). 

As a consequence of its extensional foundation, traditional 
set theory holds that there is exactly one empty set. In fact, this 
provides the set theoretic base for number theory: the empty set 
is the definition of the concept of “one”. Thus, if all employees 
are fired, then the set of employees is the same as the set of 
unicorns. Not two equivalent sets, but one single solitary set to 
which we may give several names. Again, this doesn’t 
correspond to our data processing models: “employee” and 
“unicorn” are always two distinct types, or concepts. 

This distinction between extension and intension affirms that 
a type (set) is a distinct entity from any of its members. One 
could perceive set membership, or type membership, in terms of 
a relationships between pairs of entities: set objects and member 
objects. 

 
6.3.3 Representation of Sets 
 

Sets need not be introduced as primitive kinds of objects. 
They can be generalized into objects and relationships. 
“Belonging” can be a relationship between an arbitrary object 
and an object representing a set; “subset” can be a relationship 
between two objects representing sets. With a strong enough 
capability for implication and constraint on relationships (cf. 
section 4.6), the behavior of sets can be modeled. E.g., we can 
specify a derived relationship: X “belonging” to Y and Y being 
“subset” of Z generates X “belonging” to Z. 
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Thus, the basic mechanism of objects and relationships 
seems adequate to cover the phenomena of types and sets. It’s 
useful, too, because types and sets share many of the 
characteristics of common objects. They have names (and 
perhaps aliases), and attributes (creation date, number of 
members), and relationships with other things: they are subsets 
of one another, people are responsible for maintaining them, they 
are governed by constraints, etc. 
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7 Models 
 
 

7.1 General Concept of Models 
 
e return now to the domain of computerized 
information systems. The bridge that gets us back is 
the “data model”. It is a bridge in the sense that data 

models are techniques for representing information, and are at 
the same time sufficiently structured and simplistic as to fit well 
into computer technology. 
We are always in trouble with words. The term “model” is so 
over-used as to be absurd. Out of the whole complex of 
meanings it might have, the following is what I have in mind at 
the moment. 

A model is a basic system of constructs used in describing 
reality. It reflects a person’s deepest assumptions regarding the 
elementary essence of things. It may be called a “world view”. It 
provides the building blocks, the vocabulary that pervades all of 
a person’s descriptions. In the broad arena of human thought, 
some alternative models might be composed of physical objects 
and motion, or of events seen statically in a time-space 
continuum, or of the interactions of mystical or spiritual forces, 
and so on. 

A model is more than a passive medium for recording our 
view of reality. It shapes that view, and limits our perceptions. If 
a mind is committed to a certain model, then it will perform 
amazing feats of distortion to see things structured that way, and 
it will simply be blind to the things which don’t fit that structure. 

Some linguists have been telling us that for a while. 
“...language defines experience for us .... because of our 
unconscious projection of its implicit expectations into the field 
of experience... Categories such as number, gender, case, tense, 
mode, voice, aspect, and a host of others ... are not so much 
discovered in experience as imposed upon it” [Sapir]. We’ll 
come back to that in section 11.8.5. 

W 
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In much narrower terms, the data processing community has 
evolved a number of models in which to express descriptions of 
reality. These models are highly structured, rigid, and simplistic, 
being amenable to economic processing by computer. These 
models include such things as files of records, tabular structures, 
graphs (networks) of lines connecting points, hierarchies (tree 
structures), and sets. 

Some members of that community have been so 
overwhelmed by the success of a certain technology for 
processing data that they have confused this technology with the 
natural semantics of information. They have forgotten any other 
way to think of information except as regimented hordes of 
rigidly structured data codes ⎯ in short, the mentality of the 
punched card. 

 
7.2 The Conceptual Model: Sooner, or Later? 

 
All the problems touched on in this book converge on the 

conceptual model (cf. section 2.2.2). It is in this medium that all 
the things an enterprise deals with must be reduced to crisply 
structured descriptions. 

The conceptual model will be a very real computer-related 
construct, just like a program or a data file. An enterprise is 
going to have a large amount of time, effort, and money invested 
in the conceptual model. 

There is the learning investment. In spite of our best efforts, 
any formalism we adopt as the basis of the conceptual model 
will still be an artificial structure. The concepts will not be 
perfectly intuitive to anyone; the rules, limitations, and 
idiosyncrasies will have to be learned. There will be a formal 
language to be learned, as well as operating procedures. 
(Interactive facilities and other design aids may help ⎯ after the 
bugs get ironed out ⎯ but even their use has to be learned.) 

Then comes the actual modeling effort. A lot of energy will 
go into forcing a fit between the model and the enterprise. The 
correspondences won’t always be obvious; there will be lots of 
alternatives, and it will take some iterations to recognize the best 
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choices. Sometimes it will take a flash of insight to perceive the 
real world in a new way, which better fits the model. Sometimes 
the enterprise itself will be altered to fit the model. (It’s not 
unusual for a company to adopt a whole new part numbering 
scheme before automating their inventory control.) This is all 
accompanied by the gargantuan task of simply collecting and 
coordinating a mountainous heap of descriptions. “Many 
corporations will be carrying out the lengthy job over the next 10 
years of defining the thousands of data-item types they use and 
constructing, step by step, suitable schemas from which their 
databases will be built. The description of this large quantity of 
data will be an arduous task involving much argument between 
different interested parties. Eventually the massive databases that 
develop will become one of the corporation’s major assets” 
[Martin]. 

The end result will be a physically large volume of 
information. “It must be emphasized .... that the conceptual 
schema is a real and tangible item made most explicit in machine 
readable form, couched in some well defined and potentially 
standardizable language” [ANSI]. Think of it in the same orders 
of magnitude as a program library, or a system catalog, or a 
payroll file. Think of cylinders of disk space, and printouts many 
inches thick. Think of a small army of technical personnel who 
have been indoctrinated in a particular way of conceptualizing 
data, and who have mastered the intricacies of a new language 
and the attendant operational procedures. 

All this time, manpower, and money will be invested by 
customers in any conceptual model supported in a major system. 
We had better be very careful about the architecture of the first 
one. Any attempt to replace it with a better one later will threaten 
that investment; customers won’t accept the replacement any 
faster than they now accept a major new programming language, 
or a new operating system. And the replacements will forever be 
hamstrung by compatibility and migration requirements. 

Unfortunately, there are some natural forces which work 
against our getting it right the first time. 

We are just entering a transitional phase in data description. 
The idea of having three levels of data description (i.e., including 
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a conceptual model) has been much researched and written about 
([ANSI], [GUIDE-SHARE]), but it hasn’t yet taken serious hold 
in any significant commercial systems. It’s still on the horizon; 
it’s an idea whose time is just about to come. (I hope I won’t still 
be saying that ten years from now.) 

The builders and users of today’s commercial systems quite 
justifiably want to avoid cluttering their systems with anything 
that might impair efficiency and productivity. The argument that 
this new approach will make the overall management of data 
more productive in the long run has yet to be convincingly 
demonstrated to them. 

It is quite understandable that the first steps they take in that 
direction are small steps. They will first accept data dictionaries 
that are off-line, not interfering with the productive flow of their 
systems. They will first accept dictionaries formulated in terms 
of data items and records, which are the objects they can directly 
observe proliferating in their systems, and which are most visibly 
in need of management. 

The need for a more sophisticated descriptive model will 
only gradually achieve general recognition. It will come from the 
headaches of trying to crunch together the diverse record formats 
and data structures used by growing families of applications 
operating on the same integrated database. The nonsense of 
trying to reflect all their record formats in the conceptual model, 
while still pretending that the conceptual model describes the 
entities of the enterprise, will become apparent. 

The need for a more sophisticated approach to data 
description will also grow as the interfaces of the data systems 
expand to involve more people who are not trained in computer 
disciplines. Such people will be involved both as end users and 
as managers of the information resource. Someday there will be 
a general recognition of what it means, and what it’s worth, to 
model entities and relationships instead of data items and 
records. I hope that recognition won’t come too late. 
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7.3 Models of Reality vs. Models of Data 
 

One thing we ought to have clear in our minds at the outset 
of a modeling endeavor is whether we are intent on describing a 
portion of “reality” (some human enterprise), or a data 
processing activity. 

Most models describe data processing activities, not human 
enterprises. 

They pretend to describe entity types, but the vocabulary is 
from data processing: fields, data items, values. Naming rules 
don’t reflect the conventions we use for naming people and 
things; they reflect instead techniques for locating records in 
files (cf. [Stamper 77]). 

Failure to make the distinction leads to confusion regarding 
the roles of symbols in the representation of entities (sections 
2.4, 3.8, 3.9, 8.8), and some mixed ideas of “domain” (sections 
2.4, 9.1). 

 
7.3.1 Semiotics 
 

The relevance of semiotics (a branch of philosophy dealing 
with the theory of signs) to data processing has been stressed by 
such authors as Zemanek and Stamper. It is a natural connection, 
since a computer deals only with the signs which represent 
things, and not with the things themselves. 

Some authors equate signs with information, defining 
semiotics as “the theory of information (or of signs and 
signals)”, and then further defining information as “the output of 
a mapping process, in the form of analog or digital signs or 
signals” [Tully]. 

This approach is tempting because it deals with quantifiable, 
measurable things. It lends itself to manageable theories, testable 
hypotheses, probability theorems, and other impressive 
mathematical paraphernalia. It lets one compute how many 
redundant bits have to be sent down a noisy channel to achieve a 
certain probability of correct reception at the other end. It doesn’t 
ask what those bits might mean to anybody. 
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It is a powerful ally to the approach to information that is 
founded on records and data items. The focus is on recorded 
symbols rather than on what the symbols might represent. 

This interpretation of semiotics is the wrong approach for the 
conceptual model. As its name implies, the conceptual model 
should describe concepts, not signals. Signals and concepts 
correspond very poorly. To illustrate: I consider a person’s 
weight to be a single piece of information. Depending on the 
units and precision of measurement, this information can have 
many representations. Since each representation comprises a 
different “sign” or “signal”, a narrow semiotic approach to 
information would treat each representation as a distinct piece of 
information. What is needed here is a concept of “equivalence 
classes” of signals which all convey the same meaning. 
Information as a concept would then correspond to these 
equivalence classes themselves, rather than to the signals 
contained in the classes. 

Conversely, such a narrow approach to information would 
fail to deal with the fundamental problem of ambiguity, wherein 
the same signal may convey different meanings in different 
circumstances. In general, we might have a many-to-many 
relationship between signals and concepts. 

Tully himself unwittingly encounters the duality between 
information as signs and as concepts when he says “information 
is a mapping or model of something else (which could be an 
object, or an event, or some other information)” (my emphasis). 

Computers do deal only in signs, and a database is only a 
collection of signs. From these premises one can easily ⎯ and 
incorrectly ⎯ conclude that the conceptual model describes a 
collection of signs. 

The models themselves are ensembles of signs, and in 
particular the signs designate sets of things (the external and 
internal models contain signs describing sets of records and 
fields, not individual instances). The external and internal 
models are appropriately constrained to describe sets of signs, 
since what is being described there consists of things that can be 
processed by programs and stored in devices. 
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But the conceptual model need not suffer this restriction. 
There is no reason why we can’t introduce signs naming sets of 
things (“employees”, “departments”) distinct from signs for the 
sets of signs which name such things (“employee numbers”, 
“social security numbers”, “department codes”, “department 
names”). 

With such separations, we can more clearly approach a 
semantic bridge to reality in the conceptual model, by explicitly 
relating sets of signs to sets of things. 

 
7.4 Current Models 

 
7.4.1 Four Popular Models 
 

For a long time the only model for processing data looked 
like a file of punched cards. The record model is based on such 
card images. 

Three other models are gaining popularity, being in various 
stages of acceptance in the data processing community. These 
are the hierarchical, relational, and network models. The 
hierarchical model is well established in commercial usage, e.g., 
in IMS. The network and relational models seem to be the main 
alternatives which designers of new systems are expected to 
consider. A number of commercial or prototype systems are 
based on one or the other of these two. The March 1976 issue of 
Computing Surveys was devoted to expositions of the 
hierarchical, network, and relational models. 

None of these models departs very radically from the record 
model. Records are very much apparent as the nucleus of all 
three. So, chapter 8 will deal extensively with the record model 
and all its pervasive implications. Chapter 9 will then briefly 
comment on the other three. 

 
7.4.2 An Ironic Ambiguity 
 

I will comment on the other three models in chapter 9, but I 
will not describe them. My neglect in this regard might be 
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attributable to laziness, but I have really been avoiding it because 
of a supreme irony: the models themselves are ambiguous. Each 
model can be viewed in many ways, and means different things 
to different people. 

The following is a partial list of the factors that might be 
considered in describing and comparing such models: 

 
• There is an “idealized” data structure, e.g., hierarchy or 

graph. 
• The variations on such idealized structures implied by 

the definitions of systems such as IMS and DBTG. 
• Further variations in such structures occurring in various 

actual implementations (and versions, etc.). 
• Various methods for the internal implementation of such 

structures. 
• An idealized set of operations that might be associated 

with the structure (e.g., “get parent”). 
• The actual semantics of manipulation embodied in the 

definitions of IMS and DBTG. 
• An assortment of languages in which these semantics 

might be embedded, at various levels of human 
factoring. 

• Things in these languages that have nothing to do with 
the basic data structures, e.g., currency (position) 
management. 

• Variations in all the various implementations of all these 
languages. 

• And you might evaluate all of these differently when 
considering them for the external, internal, or conceptual 
models. 

 
We often fix on some set of these characteristics as 

“essential” to a model, with the rest being cosmetic variations 
that don’t really matter. The trouble is, each of us is likely to fix 
on a slightly different set of essentials. Unless the underlying 
assumptions are very carefully exposed, many debates about 
these models are in danger of comparing apples and oranges. 
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Of course, we are just being haunted again by the perverse 
subjectivity of perceived reality. Show three people a DBTG set 
and one will see a named relationship among things, another will 
see a set of records, and the third will see a ring of pointers 
through which users have to navigate. 

I haven’t been able to decide which view is best to take for 
explaining these models. 

 
7.4.3 Graph Structured Models 
 

There is an increasingly visible trend away from record 
oriented data models toward models that might generally be 
called semantic nets, or graph structured models. The trend is 
highly visible, that is, everywhere except in current commercial 
data processing. “Information systems technology has relied 
solely on fact representations which arose from card and tape 
media. These representations will have continued utility both at 
the user interfaces for human efficiency in transaction 
specification and at the interface to physical media for computer 
efficiency, but to provide further improvements in data 
independence we will probably have to supplement them with a 
compatible, more neutral form of fact representation at the 
system interface. We may gain clues about the form of this 
supplement from the freer form work on mathematics and 
linguistics” [Senko 75b]. 

The trend is visible in binary relation models such as those 
of Abrial and Senko. It is visible in the “idea structures” of 
[Griffith]. Graph structures almost invariably emerge when the 
primary objective is the representation of information, rather 
than data processing ([Bell], [Bobrow], [Heidorn], [Schank], 
[Shapiro]). Various efforts to provide a semantic layer around the 
relational model have led to graph structures ([Sowa], 
[Roussopoulos], [Schmid], [Sharman]). 

A description of such models is beyond the scope of this 
book. One good place to start general research might be 
[Kerschberg 76a]. 

One might think, by the way, that the term “network” also 
refers to such models. Unfortunately, as it is currently used, it 
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does not. The term “network model” means something entirely 
different, as we shall see in section 9.3. 
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8 The Record Model 
 

 
ecords provide a very efficient basis for processing data. 
They enable us to map out very regular storage structures. 
They make it easy to write iterative programs for 

processing large volumes of data. They make it easy to partition 
data into convenient units for moving around, locking up, 
creating, destroying, etc. 

In short, record technology reflects our attempt to find 
efficient ways to process data. It does not reflect the natural 
structure of information. Senko refers to “a major commitment to 
particular restrictive representations like the arrays of scientific 
computation, the extensional aspects of set notations, the n-
tuples of relations, the cards, records, files, or data sets of 
commercial systems and the static categories of natural language 
grammars. Each of these representations has great merit for its 
original area of study, and in turn it has made major 
contributions to the study of information systems. Nonetheless, 
each provides only an approximate fit to the evolving, 
heterogeneous, interconnected information structures required to 
model real world enterprises” [Senko 75b]. Sowa observes: 
“Historically, database systems evolved as generalized access 
methods. They addressed the narrow issue of enabling 
independent programs to cooperate in accessing the same data. 
As a result, most database systems emphasize the questions of 
how data may be stored or accessed, but they ignore the 
questions of what the data means to the people who use it or how 
it relates to the overall operations of a business enterprise” 
[Sowa 76]. 

Record technology is such an ingrained habit of thought that 
most of us fail to see the limitations it forces on us. It didn’t 
matter much in the past, because our real business was record 
processing almost by definition. But we want to approach the 
conceptual model a little differently. We want it to reflect 
information, rather than data processing technology. When 
different applications deal with the same information using 

R
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different record technologies, those differences shouldn’t clutter 
up the conceptual model. (And we might want to consider the 
possibility of future data technologies that are not so record 
oriented.) 

When I use the term “record”, I have in mind a fixed linear 
sequence of field values, conforming to a static description 
contained in catalogs and in programs. A record description 
consists largely of a sequence of field descriptions, each 
specifying a field name, length, and data type. Each such record 
description determines one record type. 

One field (sometimes a combination of several fields) is 
often designated as the key, whose values uniquely distinguish 
and identify occurrences of this type of record. 

As far as the system is concerned, a field name signifies a 
space in the record occupied by data in a certain representation. 
Any other semantic significance of the field name is perceived 
only by the user. 

Some record formats allow a certain variability by 
permitting a named field or group of fields to occur a variable 
number of times within a record (i.e., as a list of values or sets of 
values). I will use the term normalized system to refer to systems 
that do not permit repeating groups or fields. This follows from 
the relational model, which excludes such repetitions via its 
normalization requirements (specifically, first normal form; 
[Codd 70], [Kent 73]). 

 
8.1 Semantic Implications 

 
Much of the meaning of a record is supplied by the mind of 

the user, who intuits many real world implications that 
“naturally” follow from the data. Quite often these implications 
are buried in the procedures encoded in specific application 
programs written to process the records. But if we strip away 
such inferred interpretations, and look only at the semantics that 
inherently reside in the record construct, we find the following 
presumptions about the nature of information: 
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• Any thing has exactly one type ⎯ because a record has 
exactly one record type. We are not prepared for multiple 
answers to “What kind of thing is that?”. 

• All things of the same type have exactly the same 
naming conventions and the same kinds of attributes ⎯ 
because all records of the same type have the same 
fields. 

• The kinds of names and attributes applicable to an entity 
are always predictable and don’t change much ⎯ 
because our systems presume stable record descriptions 
in the catalog or dictionary, and because we’ve learned 
that it’s traumatic to reformat a file of records. 

• There is a natural and necessary distinction between data 
and data descriptions. We are accustomed to having 
record descriptions in catalogs, and in programs, quite 
separate and different from data files. 

• In particular, the name of the relationship occurring 
between two entities is not information, since it doesn’t 
occur in the data file. For that matter, neither does the 
type of an entity (i.e., the contents of a record don’t tell 
us that the thing represented in a certain field is an 
“employee”). 

• A record, being the unit of creation and destruction, 
naturally represents one entity. Anything not represented 
by a record is not an entity. 

• Such entities are the only things about which we have 
data. The key field of a record identifies one such entity; 
all other fields provide information about that entity, and 
not about any other entity. (This is the fundamental 
information structure implied by the format of a single 
record.) 

• All entities have unique identifiers. Or at the very least, 
all entities are distinguishable from each other. I.e., for 
any two entities, we must know some fact that is 
different about them, which we can use to tell them 
apart. (Some systems require records to have unique 
keys; some do not accept duplicate records.) 
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• Each kind of fact about an entity always involves entities 
(or attribute values) of a single type. We don’t expect 
two different kinds of entities to occur in the “employer” 
fields of two people’s records; the record system doesn’t 
have any way of telling us which type is occurring in 
that field for a particular record occurrence. 

• And the entities or attribute values involved in a given 
kind of fact all have the same form of name 
(representation). We don’t have self-describing records 
which tell us which data type or format is being used in 
this particular record occurrence. 

• A given entity should be referenced by the same name 
(representation) everywhere it occurs. The only way we 
know if two references are to the same thing is by a 
match on the fields containing those references. 

• There is an essential difference between entities and 
attribute values, and between relationships and 
attributes. The difference seems to correlate with the 
things that are or aren’t represented by records. If there’s 
a record, then the thing it represents is an entity, and a 
reference to it in a field comprises a relationship (as in 
the department field of an employee record). But if there 
is no separate record for the thing, then a reference to it 
involves neither an entity nor a relationship; it’s simply 
an attribute value (as in the salary or spouse fields of an 
employee record). 

• Relationships are not distinct constructs to be 
represented in a uniform way. Obviously; otherwise we 
wouldn’t be provided with so confusingly many ways to 
represent them. 

• Many-to-many relationships are (usually) entities in their 
own right. And the associations implied by multi-valued 
attributes are also entities, even though they aren’t 
relationships. (This all follows from their being 
represented by distinct records.) But one-to-many 
relationships are (usually) not entities. 
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• Relationships and compound identifiers are the same 
phenomenon, since they can have the same 
representation. 

 
8.2 The Type/Instance Dichotomy 

 
The dichotomy between types (descriptions occurring in 

catalogs or dictionaries) and instances (occurring in files or 
databases) itself makes some limiting presumptions about 
information. 

 
8.2.1 An Instance of Exactly One Type 
 

If we intend to use a record to represent a real world entity, 
there is some difficulty in equating record types with entity 
types. It seems reasonable to view a certain person as a single 
entity (for whom we might wish to have a single record in an 
integrated database). But such an entity might be an instance of 
several entity types, such as employee, dependent, customer, 
stockholder, etc. It is difficult, within the current record 
processing technologies, to define a record type corresponding to 
each of these, and then permit a single record to simultaneously 
be an occurrence of several of the record types. 

Note that we are not dealing with a simple nesting of types 
and sub-types: all employees are people, but some customers and 
stockholders are not. 

To fit comfortably into a record-based discipline, we are 
forced to model our entity types as though they did not overlap. 
We are required to do such things as thinking of customers and 
employees as always distinct entities, sometimes related by an 
“is the same person” relationship. At most, it might be possible 
to model a simple type and sub-type structure, where records of 
the sub-type can be obtained by simply eliminating irrelevant 
fields from the containing type. 
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8.2.2 Descriptions Are Not Information 
 

The information in a file consists mainly of field values 
occurring in records. Thus there is likely to be a data item 
answering the question “Who manages the Accounting 
department?” The manager’s name can be found in a field 
somewhere. But it is not likely that the file can provide an 
answer to “How is Henry Jones related to the Accounting 
department?” There are no fields in the file containing such 
entries as “is assigned to”, “was assigned to”, “on loan to”, 
“manages”, “audits”, “handles personnel matters for”, etc. 
Depending on how the records are organized, the answer 
generally consists of a field name or a record type name, which 
are not contained in the database. To a naive seeker of 
information from the database (e.g., via a high-level query 
interface), it is not at all obvious why one question may be asked 
and the other may not. 

It’s not just that he can’t get an answer; the interfaces don’t 
provide any way to frame the question. The data management 
systems do not provide a way to ask such questions whose 
answers are field names or record type names. 

Then consider the following questions: 
 
1. How many employees are there in the Accounting 

department? 
2. What is the average number of employees per 

department? 
3. What is the maximum number of employees currently in 

any department? 
4. What is the maximum number of employees permitted in 

any department? 
5. How many more employees can be hired into the 

Accounting department? 
 
If the maximum number of employees permitted is fixed by 

corporate policy, then a system offering advanced validation 
capabilities is likely to place that number into a constraint in a 
database description, outside the database itself. Our naive 
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seeker of facts will then again find himself unable to ask the last 
two questions. He might well observe that other things having 
the effect of rules or constraints are accessible from the database, 
such as sales quotas, departmental budgets, head counts, safety 
standards, etc. The only difference, which doesn’t matter much 
to him, is that some such limits are intended to be enforced by 
the system, while others are not. 

This suggests that we might want to seek a way to represent 
such constraints in the same format ⎯ and in the same database 
⎯ as “ordinary” information, but with the added characteristic 
that they are intended to be executed and enforced by the data 
processing system. 

It is true that descriptions and constraints are inherently 
different from other data with respect to their update 
characteristics. Changes to these imply differences in the 
system’s behavior, ranging from changes in validation 
procedures to physical file reorganizations implied by format 
changes. But such descriptions and constraints need not be 
inherently different for retrieval purposes. And even with respect 
to update, the method need not be inherently different as 
perceived by users. It is only necessary that the authorization to 
do so be carefully controlled, and that the consequences be 
propagated into the system. 

Some information is in the catalog rather than in the record 
occurrences because it is the same for all occurrences, hence 
factorable. Field names, types, and lengths are typically treated 
that way. But there have been proposals for, and probably 
implementations of, systems of self-describing data. A record 
might consist of a chain of pairs: a field name and a field value. 
Then fields irrelevant to a given record occurrence just don’t 
occur. Or each field might be accompanied by its own descriptor 
of length, data type, units, etc., so these can vary from record to 
record. In such cases the names, lengths, and types of fields 
would be in the file and not in the catalog. Record lengths, as 
another example, occur in the catalog for fixed length records, 
but in the records for variable length records. If an application 
using a file of mixed record types needed to know the length of 
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each record occurrence, it might be able to find that information 
in some records and not in others. 

There seem to be two real motivations for putting 
information into the catalog: 

 
• It is used by the system. 
• It can be factored, i.e., it applies to all occurrences of a 

given type. 
 
These may be good reasons for maintaining this information 

in special system-usable formats, and for being especially 
concerned about controlling updates to it. But it is a mistake to 
presume this to be an inherently different kind of information, 
which does not need to be made available to users in the same 
way as file data. 

 
8.2.3 Regularity (Homogeneity) 
 

Record structures work best when there is a uniformity of 
characteristics over the population of an entity type. It is usually 
necessary for the entire population to be subject to the same 
naming conventions (e.g., there has to be something that can 
serve as a key field over the entire population). It is usually 
assumed that all instances of the entity type are eligible to 
participate in the same relationships. 

Most fundamentally, it is presumed that the entire population 
has the same kinds of attributes. While exceptions are tolerated, 
the essential configuration is that of a homogeneous population 
of records, all having the same fields. The underlying assumption 
is that field names can be factored out of the data 

The more we deviate from this norm of homogeneity, the 
less appropriate is the record configuration. There are certain 
techniques for accommodating variability among instances in a 
record structure, but these need to be used sparingly. If there can 
be considerable variation among entity instances, then the 
solutions become cumbersome and inefficient. Such solutions 
include: 
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• Define the record format to include the union of all 
relevant fields, where not all the fields are expected to 
have values in every record. Thus many records might 
have null values in many fields. 

• Define the same field to have different meanings in 
different records. Unfortunately, such a practice is never 
defined to the system. With respect to any processing 
done by the system, that field appears to have the same 
significance in every record occurrence. It certainly has 
only one field name, which in these cases usually turns 
out to be something totally innocuous and 
uninformative, like CODE or FIELD1. It is only the 
buried logic in application programs which knows the 
significance of these fields, and the different meanings 
they have in different records. 

 
Many entity types come to mind for which considerable 

variability of attributes is likely to occur, such as people, tools, 
clothing, furniture, vehicles, etc. For example, in a file of 
clothing records, consider which of the following field names are 
relevant (and what they might mean) in each record: size, waist 
size, neck size, sleeve length, long or short sleeves, cup size, 
inseam length, button or zipper, sex, fabric type, heel size, width, 
color, pattern, pieces, season, number, collar style, cuffs, 
neckline, sleeve style, weight, flared, belt, waterproof, formal or 
casual, age, pockets, sport, washable.... 

You can play the same game with the other entity types, or 
even try to extend this list. 

 
8.2.4 Pre-definition (Stability) 
 

Another implication of record formats, and of the file plus 
catalog configuration, is that the attributes applicable to an entity 
are pre-defined and are expected to remain quite stable. It 
generally takes a major effort to add fields to records. 

While this may be acceptable and desirable in many cases, 
there are situations where all sorts of unanticipated information 
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needs to be recorded, and a more flexible data structure is 
needed. 

The need to record information of unanticipated meaning or 
format is crudely reflected in provisions for “comments” fields 
or records. These consist of unformatted text, in which system 
facilities can do little more than search for occurrences of words. 
There is no way for, say, a query processor to know which words 
in the text name specific things (analogous to field values), 
which words specify their relationship to the thing being 
described (analogous to field names), etc. Thus, ironically, we 
have the two extremes of rigidly structured and totally 
unstructured information ⎯ but very little in between. 

 
8.3 Too Many Ways To Represent Relationships 

 
One way to represent relationships is to have two fields in a 

record containing data items which represent the two things 
being related, e.g., an employee number and a department 
number. Unfortunately, this constitutes three ways, not one: we 
generally may have a choice of three different records into which 
we specify these fields. They might be incorporated into a record 
representing either one of the related entities (e.g., a department 
number in the employee record, or an employee number in the 
department record), or they might be isolated into a new record 
defined just for the purpose of representing the relationship (so-
called intersection records). 
In the employee records: 
 

EMP-REC: EMP AGE SALARY DEPT … 
 Jones 25 20,000 Acctg  
 Smith 27 22,000 Sales  

 
In the department records: 
 
DEPT-REC: DEPT MGR EMPLOYEES … 
 Acctg Zim Shaw, Cap, Jones, Park  
 Sales Dun Smith, Ho, Asp, Cole  
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In separate intersection records: 
 

EMP-DEP: EMP DEPT 
 Asp Sales 
 Cap Acctg 
 Cole Sales 

 
The employee and department fields together constitute the 

key (identifier) of such an intersection record. Intersection 
records may include additional fields bearing information about 
the relationship ⎯ so-called intersection data. A third field, 
containing the date of assignment, might occur as such 
intersection data in the intersection records shown above. 

The actual set of choices available depends on whether the 
relationship is binary, whether the relationship is many-to-many, 
and whether the system is normalized. 

Non-binary relationships (having degree greater than two) 
always seem to get handled separately in intersection records. 

For binary relations in a non-normalized system (where 
repeating fields or groups are permitted), all three options are 
available. 

In normalized systems, only two options are available for 
one-to-many relationships. Since we can’t have a list of 
employee names in a department record, that option is ruled out. 
And, in actual practice, intersection records are virtually never 
used for this case either. The overwhelmingly predominant 
practice for this case is to embed the relationship into the records 
on the “many” side (i.e., a department name in the employee 
record). 

Finally, for many-to-many relationships in normalized 
systems, there is no choice: separate intersection records must be 
used. For example, the employment history relationship (giving 
all the departments in which an employee has worked), must be 
kept in the intersection records shown above. 

These practices lead to different representations for very 
similar relationships. Although current assignments and 
employment histories both relate employees to departments, the 
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current assignments are invariably embedded into the employee 
records, while the history gets a separate record type of its own. 

 
8.4 But Some Relationships Can’t Be Described 

 
8.4.1 Relationships Within a Record 
 

Ironically, while faced with such a plethora of techniques for 
representing relationships, we are sometimes unable to specify 
everything we want to about the relationships. The syntax of 
record descriptions often does not provide any way to express 
the structures that may exist within or among relationships. 

To understand what we mean by formally modeling the 
structure of information, consider a very generalized query 
processor trying to deal with records like the following: 
 

EMP

Sam

WEDDING_
DATE

1970

SPOUSE_
BIRTHDATE

1945

SPOUSE

Mary

BIRTHDATE

1940
 

 
Presumably the query processor could discover from the 

catalog or dictionary that EMP is a key field, and the only key 
field, for this record. But it is not capable of understanding the 
meaning of the other field names. Thus, if asked what 
information was available about employees, it would respond 
with a list of four field names, BIRTHDATE through 
WEDDING_DATE. If asked what information was available 
about a SPOUSE, the processor might be clever enough to invert 
the structure and let you know that it could find the 
corresponding employee ⎯ but that’s all. It does not know that 
there is other information available about a spouse, such as birth 
date. 

If asked about Sam’s spouse, it could reply “Sam has spouse 
Mary.” If asked about Mary’s birthdate, it would reply “no data 
available.” But if asked the right question, it might reply “Sam 
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has spouse_birthdate 1945”, totally unaware that this was 
information about Mary. 

In much the same way, the system would report the wedding 
date as a fact about the employee. There is no way to inform the 
system that this should not be regarded as a fact about the 
employee, nor even about the spouse for that matter, but as a fact 
about a relationship between the two of them. As far as the 
system is concerned, the fundamental semantic of a record 
format implies that the information has the following structure: 
 

EMP

Sam

WEDDING_
DATE

1970

SPOUSE_
BIRTHDATE

1945

SPOUSE

Mary

BIRTHDATE

1940
 

even though we might believe the information has this structure: 
 

EMP

Sam

WEDDING_DATE

1970

BIRTHDATE

1945

SPOUSE

Mary

BIRTHDATE

1940
 

 
There are two relationships here whose existence cannot be 

inferred from the record structure description: 
 
• The one between the spouse and his/her birthdate. 
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• The one between the wedding date and the relationship 
which represents their marriage. 

But even when the relationship can be defined, we are 
limited in the kinds of information we can provide about it. In 
general, we might want to name three constructs: 

• The relationship itself, e.g., MARRIED. 
• The role of each element participating in a relationship, 

e.g., HUSBAND and WIFE. 
• The kinds of elements permitted to play each role (the 

domains of the relationship), e.g., MEN and WOMEN. 
For human purposes, because we understand a lot of the 

semantics behind such words, it isn’t always necessary to be 
explicit about all three. If WIFE occurs as a field name, we know 
that the relationship is marriage and the domain is limited to 
women. The field name ADDRESS explicitly refers to the 
domain of things which may occur there; we may infer that the 
role is RESIDENCE, and the relationship is RESIDES. 
Sometimes we use compounded field names like DATE-OF-
ASSIGNMENT to combine several of these names into one. 

 
Unfortunately, however, record descriptions don’t give us 

any regular way to name all three of these constructs, nor to 
indicate which ones we are naming. The only tools we can try to 
adapt are the record type name and the field name, but this only 
gives us two names for three constructs. We tend to use these 
two names in all sorts of combinations for relationships, roles, 
and domains, making it difficult to design any system facility 
using field names to deal with relationships. 

Actually, the two names are only available in intersection 
records, which are exclusively used to model the relationship. In 
most records, only field names are available for these purposes. 
Because a record is often a conglomerate of many relationships, 
the record type name doesn’t refer to any of them. Instead, the 
record type name often just refers to the focal object of these 
relationships, e.g., an EMPLOYEE record. 

Consider two relationships involving the indicated roles, 
with the corresponding domains shown in parentheses: 
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• RESIDES: RESIDENT (PERSON), RESIDENCE 
(ADDRESS). 

• EMPLOYED: EMPLOYER (COMPANY), 
EMPLOYEE (PERSON). 

 
In a real file, say of a bank’s clients, these might be buried 

within a single CLIENT record, with just three field names: 
 

EMPLOYERADDRESSCLIENT
 

 
The names of the relationships are lost altogether. One of the 

field names is a role name, the other is a domain name, and the 
third is neither. Both of the role names associated with the client 
are also lost. 

 
8.4.2 Relationships That Span Records 
 

Many relationships are represented by matching field values 
in two records, i.e., a symbolic linkage (a form of computed 
relationship ⎯ section 4.6). Sometimes this linkage must be 
traversed just to discover which thing is related, but sometimes it 
is only traversed if we need more information about the related 
thing. 

An example of the first kind would be the case where 
employee records and project records both contained department 
numbers. It might be the policy that all employees in a 
department work on all projects assigned to the department. 
Then the way to determine which employees work on which 
projects is to match employee and project records on common 
department numbers (the relational “join” operation). I.e., you 
can’t discover from the employee record which projects he 
works on. You have to go over to the project records and find the 
ones that have a department number matching his. 

An example of the second kind is again provided by the 
department number in an employee record. One needn’t go any 
further to identify the department to which the employee is 
assigned, but in order to find out anything else about the 
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department (such as its name, or the manager) one has to get to 
the corresponding department record. 

In a conventional record-processing environment, three 
things are rarely described about such linkages: 

 
• The existence of the linkage. 
• Which record types are involved. 
• What the linkages signify, e.g., the name of the 

relationship. (This is often implicit in the field names for 
the second kind of linkage, but not indicated at all for the 
first kind of linkage.) 

 
Thus these relationships are not really modeled, in the sense 

that our generalized query processor doesn’t really know how to 
traverse them. How can this processor reply to “Which 
employees work on which projects?” There’s nothing in any 
directory to identify what “work on” signifies. There’s probably 
nothing to indicate that there’s any connection at all between 
employees and projects. 

Or consider the query “What is the name of the manager of 
the Accounting department?” A department record is likely to 
have a field named MANAGER, probably containing employee 
numbers. Who is going to tell the query processor that it ought to 
look in EMPLOYEE records to find the name of a MANAGER? 
 

NAME

Smith

EMPLOYEE

9876543

…

…

MANAGER

9876543

DEPARTMENT

Accounting

…

…

(the missing link)
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Domains 
 

One construct that helps with some of these problems is the 
“domain” concept, which is used with some success in the 
relational model. It is used in the sense that if fields take their 
values from the same domain, then the fields are representing the 
“same kind of thing”, and hence imply the basis for some kind of 
linkage. This requires that the record descriptions include an 
identifiable domain specification in each field description. 

Unfortunately, the construct is not used in a very consistent 
way, and in any case still has its limitations. 

The occurrence of common domains does not identify the 
nature of the relationship. Employee records, project records, 
and equipment records may all contain fields taken from the 
domain of departments; that doesn’t tell us anything about the 
nature of the relationships among any of these entities. 

A domain name may or may not provide a clue as to what 
record type to seek for the related item. There is generally no 
discipline that requires domain names to coincide with record 
type names for a given entity type. Thus these various fields 
we’ve mentioned might all come from a domain named 
“DEPARTMENTS”; the record type for these entities might well 
be named “DEPTS”, or “DEPT-RECS”. There’s no help here for 
our query processor. 

Sometimes the domain concept is shifted to refer to 
representations, or data types, rather than entities. Thus such 
things as employee numbers, or characters, or integers, might get 
specified as domains. If “employee numbers” is a domain for 
some field, no linkage will be recognized with a field whose 
domain is “social security numbers”, even though they might 
refer to the same person. If “characters” is a domain, then 
spurious linkages will be implied between, e.g., fields containing 
names and fields containing addresses. 

And, finally, the domain construct is always implemented, if 
at all, in terms of simply matching domain names. This totally 
fails to allow for overlapping entity types, e.g., domains and sub-
domains. There is no system I know of which will recognize a 
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linkage between one field whose domain is “employees” and 
another whose domain is “people”. 
 
Non-symbolic Linkages 
 

Non-symbolic linkages (i.e., those implemented by some 
kind of file structure rather than by matching field values) offer 
certain advantages. 

Their existence is always known (described) to the system. 
The description often names the relationship (but not always, as 
in hierarchies). 

There is always a known path to the related record type. 
And a certain kind of validity checking, induced by symbolic 

linkages, can naturally be avoided. Namely, a non-symbolic 
linkage simply cannot be established to a non-existent entity. 
With symbolic linkages, this must typically be expressed as an 
explicit constraint, such as “if an employee number occurs in the 
manager field of a department record, then there must also exist 
an employee record containing that employee number”. 

 
8.4.3 When is it an Intersection Record? 
 

Any two fields in any record represent some kind of 
relationship. In the records illustrated in section 8.3, we can 
detect such relationships as the following: 

 
• A correlation between ages and salaries. 
• A correlation between managers and employees. 
• A correlation between employees and departments. 
 
In effect, every record is an intersection record. If it has 

more than two fields, it is representing a multitude of 
relationships simultaneously. How does the system really know 
which of these records is “intended” to represent a relationship? 
How does it know that EMP-DEP is the name of a relationship 
between employees and departments, but EMP-REC is not the 
name of a relationship between ages and salaries? 
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Does the system really know anything about intersection 
records, or is it all in the minds of the users? 

 
8.5 And Some Relationships Can’t Even Be Represented 

 
It’s a little discomforting to find, as in the preceding section, 

that we have some relationships in our database that we can’t 
adequately describe in the catalog or dictionary. 

It’s far worse to discover relationships that can’t even be 
represented in record structures in the database. That is, we can’t 
even record the data, let alone describe it. 

A record type description is based on the fundamental 
premise that each occurrence of a given field (i.e., in each record 
occurrence) contains the same type of data item, and hence the 
field can represent exactly one entity type. It follows that binary 
relations can only occur between two entity types (or within one 
entity type, as in people to people relationships). There is no 
provision for (no way to represent) relationships permitting 
multiple entity types in one domain, especially when those entity 
types have very different naming conventions. 

Such relationships certainly do exist. Companies, 
government agencies, schools, and people will usually be treated 
as distinct entity types ⎯ but any of these might be a person’s 
employer. We may treat furniture and vehicles as distinct entity 
types, but they share a common relationship to their 
manufacturers. As a general example, consider an “owns” 
relationship: various kinds of things (employees, departments, 
divisions, locations) can own various kinds of things (furniture, 
vehicles, supplies, machines, buildings). Potentially each kind of 
thing might have a different identifier syntax, in terms of length, 
character set, variability, etc. Even worse, their names might 
have different qualification structure, e.g., department names are 
only unique within divisions, and hence a department name must 
always be qualified by a division name. If we start with a simple 
form of this owning relationship, where employees or  
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departments own furniture or vehicles, then we have a 
configuration like this: 
 

PROPERTY OWNER 
Furniture ID Emp Number 
Vehicle Num Div Dept 

 
Such a relationship has several interesting characteristics. 

For one thing, it has a variable number of fields, depending on 
whether the owner is an employee or a department (in relational 
terms, this is a relation of degree two and a half, on the average). 
Secondly, the terms “furniture id” and “vehicle num” would 
typically occur as field names; in this file, different occurrences 
of these “records” may have different field names associated 
with them. Furthermore, one does not know how to interpret a 
field (or even how long it is, or how many there are) without 
knowing the type of entity represented there. Here is a case 
where the type of an entity is itself useful information to be 
obtained from the database; one should be able to ask “what is 
the type of the owner of vehicle ABC123?” And, if you just 
inquire about the owner of that vehicle, you should be provided 
with a two-part answer: the type and the name. 

In general, record formats can’t accommodate the case 
where: 

 
• A given kind of fact (e.g., who owns that?) might 

involve several types of entities. 
• Each of these entity types has a different representation 

(length, data type, etc.) for its names. (Even if they had 
the same representation, the format only works if the 
names are unique across all the entity types. It’s no good 
if a furniture identifier might turn out to be the same as 
some vehicle number.) 

• Or, even worse, the different entity types need different 
numbers of fields to represent them. 
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One “solution” that record processing might force on us is to 
create artificial super-domains or super-types, one containing all 
owners and one containing all owned things. (And this presumes 
the system permits us to deal with types and sub-types in the first 
place, e.g., owners and employees.) A new and artificial 
identifier would have to be created applying to everything in the 
domain; employees and departments would have to acquire new 
“owner numbers”. The “owns” relationship would have to be 
recorded using these new identifiers, rather than more familiar 
employee numbers or department names. The same would apply 
to all owned things; they would acquire an arbitrary “property 
number” as another synonym. Furthermore, whenever these 
domains got extended (e.g., to include locations as owners), then 
a whole new set of owner numbers must be assigned to these 
other entities. 

Another “solution” that fits the record oriented base is to 
partition this example into four relations: 

 
• employees own-1 vehicles, 
• employees own-2 furniture, 
• departments own-3 vehicles, 
• departments own-4 furniture. 
 
This approach also has interesting consequences. A single 

relationship name (“owns”) has been replaced by four, which 
users have to learn to discriminate between. What used to be a 
simple inquiry (“who owns vehicle ABC123?”) now requires an 
interactive dialog, or some conditional programming statements: 
“which employee owns-1 vehicle ABC123?” “if nobody, then 
which department owns-3 vehicle ABC123?” To ask that, you 
now have to know in advance all the kinds of things which might 
be owners, and which is the appropriate form of the “owns” verb 
for each. 

And integrity constraints get much more complex. If a thing 
can have at most one owner, then in the original example it was 
sufficient to specify that “owns” is a one-to-many relationship. 
Now we have to specify that for each of the four new 
relationships, plus the constraints: 
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• a vehicle may be owned via own-1 or own-3, but not 

both; 
• a piece of furniture may be owned via own-2 or own-4, 

but not both. 
 
Finally, if these domains are extended to include more entity 

types, then all these problems explode quite rapidly. 
[Chen] avoids dealing with this problem by using the term 

“entity set” loosely, sometimes referring to an entity type and 
sometimes to a domain of a relation. There is always the unstated 
assumption of a homogeneous naming convention over the 
whole set. 

 
8.6 Do Records Represent Entities? Or Relationships? 

 
If we use records to model reality, it is fairly natural to 

assume that we intend a record to represent an entity. By this I 
mean we might expect to find a one to one correspondence 
between instances of records and entities (within the sphere of 
interest; the database does not model the whole world). I will 
refer to this as the modeling assumption. 

Several questions arise. The difficulty of modeling entities 
that belong to several entity types has already been mentioned. 
Other questions follow. 

 
8.6.1 No Record, No Entity? 
 

A corollary of the modeling assumption is that if something 
is not represented by exactly one distinct record, then it is not 
considered an entity. How well does that jibe with our intuitions 
about entities? 

We might have too many records. There is no discipline 
preventing the definition of several record types (or relations, in 
the relational model) corresponding to one entity type. That is, 
we could have several record types defined over the same key, 
with each record type containing different attributes of the 
subject entity. One might be tempted to do this for economic 
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reasons, e.g., to group together attributes that tend to be accessed 
together, or to physically segregate rarely used data. Regardless 
of the motivation, such a configuration is permitted in all record 
based systems I know of. Thus none of these systems really has a 
well-defined semantic establishing a one to one correspondence 
between entities and records. 

Conversely (and ironically), there is actually no discipline 
which requires any record at all for an entity. This can occur (in a 
normalized system) if there didn’t happen to be any single-
valued information about the entity. Suppose one had in mind to 
treat projects as entities, but all the information to be maintained 
about them turned out to be multi-valued (in relational terms, we 
find no functional dependences on projects). That is, our projects 
can have multiple managers, multiple objectives, multiple start 
and stop dates, multiple budgets, and so on. Each such fact needs 
to be maintained in a distinct intersection record, and there might 
be no motivation to define a single record type or relation to 
represent the projects themselves. One would have record types 
(relations) called “project-manager”, “project-objective”, 
“project-dates”, and so on, but none called simply “project”. 

In general, if “being the subject of information” is the 
criterion for thinking of something as an entity, then there are 
often many entities which are not represented by their own 
record types. 

There are other, more common situations where we don’t 
have any distinct records representing certain things. These are 
the things we intuitively think of as attributes of other things, 
such as salaries, colors, birthdates, etc. Unfortunately, apart from 
the listing of examples, I find it difficult to identify precise 
criteria for deciding whether something is an entity, and whether 
it is to be represented by a record (obviously, I’m still not sure if 
those are the same question). 

 
8.6.2 If It Has A Record, It’s An Entity(?) 
 

Another corollary to the modeling assumption is this: if we 
find some things which are in one to one correspondence with a 
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set of records, then the records are representing those things, and 
those things are entities. 

By this reasoning, anything corresponding to a unique key in 
a record is an entity. (Those of you familiar with the relational 
model may recognize that these are the things that become the 
“subjects” of relations via an analysis of functional 
dependences.) 

Such a rule may not always be intuitively satisfying. 
Consider a ternary relationship expressing an examination 
schedule, in the form 
 

ROOMTEACHER PERIOD

key

key
 

 
The combination of a given teacher and a given period can 

occur at most once. Hence this pair qualifies as a key, and it 
uniquely determines the corresponding room (i.e., the pair is the 
subject of a functional dependence). 

Similarly, the combination of a given room and a given 
period can occur at most once. Hence this pair also qualifies as a 
key, and it uniquely determines the corresponding teacher (this 
pair is also the subject of a functional dependence). 

In contrast, the combination of a given teacher and a given 
room may occur many times (in many periods). Hence this pair 
is neither a key nor the subject of a functional dependence. 

The notions of key, and of subjects of functional 
dependences, are unreliable as determinants of entities. 
Sometimes the uniqueness of fields arises from auxiliary 
semantics having nothing to do with an intent to identify entities. 
In this case the uniqueness of teacher-period pairs and room-
period pairs happens to arise from these constraints: 

 
• A teacher can only occupy one room per period. 
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• Only one teacher is assigned to a room for a given 
period. 

 
These constraints have nothing to do with “entity-ness”. 

There is no reason to consider the teacher-room pair as 
intrinsically different (e.g., not an entity) from the other two. 
Either all of these pairs are entities, or none of them is. 

 
8.6.3 Are Relationships Entities? Are Attributes? 
 

If all records represent entities, then what entity does an 
intersection record represent? It must be a relationship. 

Are all relationships entities? Not the ones that are 
embedded in the records of other entities, if by representing we 
really do mean a one to one correspondence. (If an employee and 
his relationship to a department are two distinct entities, then 
they shouldn’t be “represented” by the same record.) 

Certain arguments are sometimes advanced as to why 
intersection records represent distinct entities, such as: 

 
• They represent information which is symmetrically 

about both related items, hence shouldn’t be exclusively 
in one record or the other. 

• There is data maintained about the relationship that is 
not directly data about either related item (e.g., quantity 
on hand for parts in warehouses, assignment dates for 
employment histories). That is, anything about which 
data is maintained must be an entity; ergo, these 
relationships are entities. 

 
Unfortunately, these generally apply equally well to the one-

to-many relationships which are typically embedded in other 
records (an employee record is likely to contain a date of 
assignment field). 

Record-based modeling in general tends to exaggerate out of 
all proportion the difference between one-to-many and many-to-
many relationships, especially in normalized systems. That this 
is a relatively minor semantic distinction is especially noticeable 
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when comparing such similar relationships as “current 
employment” and “employment history”. 

It’s difficult to get the three concepts of “record”, 
“relationship”, and “entity” consistent with each other. We could 
stop claiming that all records represent entities (in a one to one 
fashion). Or we could arbitrarily consider some relationships to 
be entities and others not, based on no real criterion except how 
we arbitrarily chose to model them. (Remember, there is nothing 
to prevent a one-to-many relationship from being split out into 
intersection records.) Or we might consider all relationships to 
be entities, and split them out into distinct intersection records. 
This leads to very small records, and begins to approach a 
“binary relation” model (section 10.2), or an “irreducible” model 
(section 10.3). 

If you want to distinguish between relationships and 
attributes (I don’t, but many people do), there are other 
problems. Using more or less traditional meanings of certain 
terms, it turns out that some intersection records don’t even 
represent relationships. They also have to be used for multi-
valued attributes (at least in a normalized system). That is, if cars 
can be multi-colored, then this has to be represented in an 
intersection record type, with each record recording one of the 
colors of one of the cars. This kind of fact is traditionally called 
an attribute, rather than a relationship. (Because the colors are 
not entities, because they are not represented by records.) 

Let me cope with another ambiguity at this point: I am using 
the term “attribute” to refer to the association between an entity 
and some value, and not to that value itself. (Blue is not an 
attribute; but the blue-ness of my car is.) Conventionally, that 
association is considered to be neither a relationship nor an 
entity. Hence those intersection records represent neither 
relationships nor entities. 

In addition to being represented by their own records, such 
so-called “attributes” can exhibit another characteristic property 
of entities (or relationships): they themselves might be the 
subject of some information (like intersection data). Thus, the 
intersection records required to list the children of employees 
might include their birthdays; the intersection records listing the 
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colors of multi-colored cars might include the percentage of a 
car’s surface covered by a given color. 

To summarize, consider the contradictions in the following 
assertions: 

 
• Every record represents an entity. 
• Every entity is represented by a distinct record. 
• All relationships are entities. 
• Some relationships are not represented by distinct 

records. 
• The “subject” of an attribute is an entity. 
• Some attributes are the subjects of other attributes. 
• Attributes are not entities. 
• Some records represent attributes (and nothing else). 
 
You play the game. See how many contradictory 

combinations you can find. 
Then decide which of those assertions you’re willing to give 

up in order to achieve consistency. 
 

8.6.4 The Create/Destroy Semantic 
 

Does insertion and deletion of records model the creation 
and destruction of entities? 

The one characteristic of records that might be 
informationally meaningful for an entity concept is the 
create/destroy semantic. If a record represents an entity, we have 
an implication that the lifetime of that entity is explicitly 
signaled to the system by the creation and destruction of that 
record. If the thing is not represented by a record, then it could 
be referred to at any time in other records without any prior 
announcement of its existence (the traditional situation for such 
things as colors, dates, and most numeric quantities). 

This semantic is not always enforced. In some systems it 
might be possible to mention a department name in an employee 
record without any verification that the corresponding 
department record exists. Or it might be possible to delete a 
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department record without regard for existing references to that 
department in other records. And, in fact, such “enforcement” 
might not always be desirable. It is plausible that an installation 
might wish to purge records of employees terminated more than 
25 years ago, but still retain other records that happen to mention 
such employees. 

The creation and destruction of records might have various 
semantic interpretations in the real world. Occasionally it might 
really signify the beginning and end of an entity (e.g., the birth 
and death of a person). More often, however, “create” or 
“destroy” are really instructions to the system to “notice” or 
“forget” an entity, quite unrelated to the beginning and end of the 
entity. A personnel record is created when a person is hired 
(which could be interpreted as “create this employee”, but also 
as “notice this person, who was born a long time ago”) ⎯ 
perhaps except when a former employee is re-hired (perhaps no 
new record is created at all). And historical records are likely to 
be kept long after an employee terminates, or a person dies. Thus 
one still has to explain somewhere what semantic is implied by 
the creation or destruction of a record. 

In structured files, record deletion carries with it problems of 
cascading delete (which related records must also be deleted?). 
The rules dictated by the file structure have to be very carefully 
correlated with the semantics of “existence dependence” among 
the real entities. 

If we want to think of relationships as entities, then the 
create/destroy semantic is inconsistently applied. Some 
relationships ⎯ namely those embedded in the records of other 
entities ⎯ can be modified by simple update of those records. 
For other relationships, however ⎯ namely those maintained in 
separate intersection records ⎯ the same “update” might have to 
be done by destroying and creating records (at least in those 
systems which don’t permit update of key fields). 

Thus, in the long run, it’s probably better to specify 
explicitly what we intend for the create/destroy semantics of an 
entity, rather than relying on the behavior of the corresponding 
records in the system. 
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8.7 Distinguishability 
 

Two questions arise here. Do records have to be 
distinguishable by their contents? Do they have to be 
distinguishable at all? 

If some kind of file structure is available, such as ordering or 
a hierarchical structure, then that structure can be used to 
distinguish records which are identical in content. One can refer 
to the first record, or the next after X, or the parent of X, and so 
on, without ever mentioning anything about the content of the 
desired record. 

Even with such capability, some systems do not permit 
duplicate records. 

In systems without any such file structure, such as the 
relational model, records can only be distinguished by their 
content. The relational model does in fact require this 
distinguishability; duplicate records are not permitted. 

Rather than comment on such constraints directly, let me just 
illustrate some behavior of real entities which doesn’t conform to 
such constraints. 

We don’t always need all entities to be distinguishable, even 
though we want them to be modeled as distinct. That is, we may 
want to know there are several of them, and want to be able to 
say distinct things about them in the future, but at the moment 
we don’t care which is which. There doesn’t have to be any 
difference in the facts we know about them. One example is the 
table of organization of a military unit, or a duty roster. The 
permanent entities are the jobs, with such attributes as the job 
title, salary, experience requirements, etc. One of the transient 
facts about a job is the person currently holding it; when several 
identical jobs are vacant, the records may perfectly well be 
identical. When we hire a typist, we will simply ask for one of 
the unoccupied typist records; we don’t care which. 

To manage the circulation and inventory of a library we 
might have one record for each physical book, but only keyed on 
title and author (allowing duplicates). The library might not need 
to keep track of each copy individually, but still have a separate 
record to indicate who has currently borrowed it. (Many libraries 
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do give each physical book its own distinct “accession number”, 
but the point is that this needn’t always be the case.) 

In other cases it may be inconvenient to maintain 
distinguishability on the basis of field contents. For entities 
which are primarily distinguished by order (e.g., lines of text in a 
text file), it can be very cumbersome to maintain a sequence field 
⎯ especially if two independent processes can be doing 
insertions and deletions in different parts of the file. (However, 
there is an alternative: instead of modeling order with a sequence 
field, one could simulate chaining by including in each record 
the keys of its predecessor and successor. This does require that 
both adjacent records be locked and updated in order to insert or 
delete a record in the middle, and also that some form of null 
value is available for use in the first and last records.) 

Sometimes identical records can be distinguished in more 
complex ways via structure, but still have multiple paths, or 
unpredictable path lengths, making it difficult to capture the 
distinction in a field format. (E.g., different children may have 
duplicate names, birthdates, etc., so long as they are unique 
within parent. Thus a child might be uniquely reached on a path 
through either parent. If the child’s record has to be distinct on 
the basis of its content, then an arbitrary convention has to be 
established to select either the mother’s or father’s identifier to 
be included in the child’s record.) 

Thus it seems at least debatable whether records always need 
to be distinguishable, or distinguishable by content. 

 
8.8 Naming Practices 

 
8.8.1 Things and Their Names 
 

Record structures work best when there is an exact one to 
one correspondence between entities and their names 
(representations), i.e., no synonyms or ambiguities. And they 
work best when all entities of a given type have the same name 
formats (representation). Under these conditions, it is feasible to 
have a single format specified for a field in which these entities 
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might occur. And it is easy to detect references to the same 
entity: just match the contents of the fields. 

Real entities don’t always behave so simply. The employees 
of a multi-national corporation might not all have social security 
numbers, or employee numbers (or they might be in different 
formats in different countries). But many employees have both, 
and some may have several social security numbers. Some books 
don’t have “International Standard Book Numbers” (ISBN), 
others don’t have Library of Congress numbers, and some have 
neither. But many books have both ⎯ and some have several 
ISBN’s. And Library of Congress numbers apply to a larger class 
of entities than do ISBN’s; they are also assigned to films, 
recordings, and other forms of publication, in addition to books. 
Oil companies have their own conventions for naming their own 
oil wells, and the American Petroleum Institute has also assigned 
“standard” names to some wells ⎯ but not all. 

For all practical purposes, record systems can’t cope with 
partially applicable names. In order to use records for an 
application, it is necessary that some naming convention be 
adopted which applies to all occurrences of the entity type. 

Synonyms are not really managed at all, as far as the 
structure and description of data are concerned. If fields in two 
different record types contain employee numbers, then the 
system can perceive that some of these records might refer to the 
same person. (This is, in fact, the fundamental mechanism for 
expressing relationships in the relational model ⎯ matching 
field values imply that two records are related, and can be 
“joined”.) But if one record type contains social security 
numbers instead, then this knowledge is lost. As far as the 
system is concerned, there are no potential relationships here. It 
is only in the minds of users, and in procedural logic buried in 
programs, that any suspicion lurks that these might in fact refer 
to the same people. 

And in all of this, we haven’t bothered to mention simple 
synonyms. Many skills, jobs, companies, people, colors, etc., 
etc., have more than one name. We might have to deal with them 
in multiple languages, as well. We have many ways to represent 
the same date. Quantifiable things are written in different ways 
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depending on the unit of measure, data type, number base, and so 
on. Our systems are usually inconsistent in handling these: they 
will help with such things as conversion algorithms in some 
cases, but not in others. 

It can be very difficult to model, in a record based system, 
the knowledge that different representations in different records 
might refer to a single underlying entity (cf. [Stamper 77], [Hall 
76], [Falkenberg 76b], [Kent 77a]). 

Perhaps the most blatant illustration of this is our inability to 
manage mailing lists. I don’t know how to explain to my non-
technical friends why sophisticated modern computers can’t 
eliminate the duplications in a mailing list. The most trivial 
variation in the way a person writes, abbreviates, or punctuates 
his name or address is enough to confuse the system, and prevent 
it from recognizing references to the same person. 

 
8.8.2 Structured Names 
 

Additional confusion arises when the synonyms of an entity 
exhibit different kinds of structure. A person’s name might be 
structured into three fields for first, middle, and last names; his 
other synonyms are single fields: employee number, social 
security number. A date (if you will accept that as an entity) has 
three fields in the traditional representation, but only one in 
Julian notation. (A Julian date is a single integer combining year 
and day of year: the last day of 1977 is 77365.) Now, every 
relationship involving a person or a date will have an uncertainty, 
not only with respect to the data items the fields might contain, 
but also with respect to the number of fields occurring in the 
record. Thus a binary relationship between people and dates 
(e.g., birthdates) could be represented in two, four, or six fields, 
depending on the representations chosen. But it is still 
fundamentally a binary relationship. Thus there is potentially a 
poor (and unstable) correspondence between the degree of a 
relationship and the number of fields used to represent it. 

Note that this differs from an earlier situation (section 8.5) 
where we had different kinds of entities. Here we have the same 
entities, but different names. 
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8.8.3 Composite Names and the Semantics of Relationships 
 

Composite (e.g., qualified) names occurring in records tend 
to confuse the purpose and semantics (and degree) of the 
relationships being represented. This is especially noticeable 
when the composite names are themselves based on 
relationships. Consider, for example, the naming of employee’s 
dependents by the two fields consisting of the employee 
identification plus the dependent’s first name (as in section 
3.3.2). 

 
Redundancy 
 

The dependents in this illustration might occur in any 
number of relationships, being related, e.g., to benefits programs 
for which they are eligible, histories of claims and payments, 
employees responsible for them as counselors, other employee 
records because the dependents are themselves employees, etc. 
From an informational point of view, the employee on whom the 
person is dependent comprises a distinct, independent 
relationship. Yet, due to the naming convention, this information 
is gratuitously carried around in all the other relationships. For 
all of the other information, there is a single well-defined 
relationship that must be accessed to get the facts; but for this 
particular information, any relationship will do. (Of course, that 
gratuitous information would suddenly disappear if the naming 
convention for dependents was switched from qualified naming 
to social security numbers.) 

A basic information model should be able to represent 
dependents as individual entities in these relationships, without 
dragging their related employees into every such context. If it is 
useful for applications to see dependents so identified in various 
relationships, then it is appropriate to define such derived 
“views” for the benefit of these applications. But the underlying 
information model need not confuse relationships with 
identification. A given relationship (e.g., between a dependent 
and a benefit program) exists independent of the means of 
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identifying the dependent. That relationship should not be 
perturbed by problems or changes which might arise in the 
identification scheme. 

 
Degree 
 

And the degree gets confused. The relationship between a 
dependent and a counselor is nominally a binary relationship, but 
it has three fields, two of which identify employees. In a certain 
sense, one of them is “really” there as part of the intended 
information, while the other is a “phantom” introduced by virtue 
of the naming convention. This phantom employee would 
disappear if dependents were to be identified by social security 
number instead of a qualified name. (Does the degree of the 
relation depend on the naming conventions used?) 

 
Domains, Implied Relationships 
 

In the relational model, a potential linkage (relationship) is 
implied when two fields take their values from the same domain. 
A join operation is not permitted unless the compared columns 
come from the same domain; this is supposed to insure that the 
“same kinds” of things are being compared. However, domains 
can only be specified for single fields (columns); there is no 
mechanism for indicating that multiple columns represent 
“entities” from a single domain, as is the case with composite 
keys. Thus, in the present example, dependents are identified by 
two fields, one from the domain of “first names” and one from 
the domain of “employee numbers” (or “employees”). Nothing 
in any record description would mention a domain of 
“dependents”. If joining is permitted on multiple fields 
simultaneously, then these records could be joined with any 
records also containing two fields whose domains are 
“employees” and “first names” ⎯ no matter whose first names 
they might be: the employee’s own, his dependent’s, his 
manager’s, or anyone else who might share a relation with him. 
There is no way to constrain records to be joinable only with 
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other records that refer to dependents; hence, any number of 
spurious relationships might be implied. 

The following is a valid join. What does it signify? 

EMP-NUM FIRST-NAME

a dependent

AGE …

some facts…

EMP-NUM FIRST-NAME

an employee

DEPT …

some facts…

LAST-NAME

 
 

8.8.4 The Reducibility Ambiguity 
 

The theory of irreducible records (which, in the logical 
development of this book, isn’t explained until section 10.3), 
encounters a severe ambiguity, which can be blamed precisely on 
the use of composite names (including qualified names). This 
highlights the confusion over which entities are involved in a 
relationship, and which facts are actually being represented in a 
record; and it illustrates how such an analysis is unduly affected 
by the choice of names for the entities involved. 

Consider a person’s birthday. On the face of it, this is an 
elementary fact ⎯ a simple binary relationship between a person 
and a certain day in the past. And, if we happen to represent 
dates in Julian notation (one field), then birthday actually has the 
structure of an elementary fact. But if we choose to change the 
naming of the date to the more conventional notation involving 
three fields, then we have a record containing four fields. This 
record can now be reduced to three binary records: 

 
• Person and year, 
• Person and month, 
• Person and day of month. 
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The original birthday record can always be recovered by 
joining these three. 

The same analysis, and ambiguity, applies whenever a 
composite naming convention is selected for an entity. City of 
birth, for example, is an irreducible fact if globally unique city 
codes are used; it is reducible if the city is identified by the 
composite of, e.g., city, state, and country names. 

The analysis of the structure of information will always be 
confused and ambiguous if carried out in terms of record based 
concepts such as fields and data items, rather than in terms of the 
underlying entities. Composite names are in general not 
precisely equivalent in function to simple unique identifiers for 
the same entities. Composite names almost always convey 
additional information; when used in lieu of simple names they 
necessarily change the underlying structure of the information. A 
simple name simply designates an entity; a composite name does 
that, but it simultaneously informs us about other related entities. 
A city code simply designates a city; the conventional notation 
may additionally tell us the state and country in which it is 
located. A Julian date simply designates a certain day (if we 
don’t bother to do certain computations); the conventional 
notation additionally tells us the year and month in which it 
occurred, as well as the day of the month. 

This dual role of composite names precisely parallels the 
ambiguity of reducibility. In the role of designating a single 
entity, it could be part of an irreducible fact; in the role of 
providing auxiliary information about related entities, it leads to 
reducibility. 

This kind of duality leads [Chen] to classify relations into 
two types, regular and weak, depending on whether the entities 
involved are identified by simple or qualified names. This is a 
curious situation: the nature of the relation is considered to be 
different according to the method of naming the related entities. 

A precise model of information should distinguish carefully 
between the structure of entities being modeled and the various 
structures of names that might be associated with them. This 
implies a distinction in the model between entities and traditional 
data items. 
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8.8.5 Another Ambiguity 
 

“Intersection data” ⎯ data about relationships ⎯ also leads 
to irreducible records with three fields, with two of the fields 
serving as a composite key. For example, the nature of the 
kinship between a dependent and an employee would be 
represented as: 
 

KINSHIPEMPLOYEE DEPENDENT

key
 

Unfortunately, this configuration is indistinguishable from 
the form in which information is recorded about entities that 
happen to have qualified names. If, as earlier, dependents are 
identified via a qualified name including the related employee, 
then the age of the dependent would be recorded as follows: 
 

AGEEMPLOYEE DEPENDENT

key
 

This fact is really about the dependent alone, while the 
previous one was about the relationship between the dependent 
and an employee. But the structure of the two in “irreducible” 
form is indistinguishable. Thus, if naming conventions are not 
separated out from entity representation, “irreducible” records 
still do not model the structure of information unambiguously. 

To see the significance, compare what happens to the 
preceding two structures if dependents were named simply, e.g., 
by social security numbers. 

In unreduced records, a composite key is likely to be serving 
both roles simultaneously. It would not be unusual to see the two 
records shown above combined into one (since they have the 
same key), containing both age (a fact about the dependent) and 
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kinship (a fact about the relationship). It is thus ambiguous as to 
which entity is really represented by this record. 

 
8.9 Records Are Useful 

 
The record concept does serve a useful function in defining 

certain groupings of information. 
In actually doing data processing, a record constitutes a 

package of information to be inserted or deleted, according to 
some pre-established conventions (via record type descriptions). 

Such packages of information are also useful in managing 
the different views which different applications have of the 
underlying data, and in controlling the subsets of such data 
which different applications are authorized to access. 

This is still another function of the record type name: it 
names a particular grouping of information, for such purposes as 
view or authorization management. This is much more 
appropriate than some of the other significances attached to the 
name, which is sometimes taken to signify a subject (entity type) 
and sometimes a relationship. 

 
8.10 Implicit Constraints 

 
It’s also worth noting that, because a record gets created or 

destroyed as a unit, it imposes an implicit constraint on the 
various pieces of information collected in the record. In 
particular, it imposes 1:1 correspondences between various sets 
of entities. Maintaining an employee number, department 
number, and salary in the same record guarantees that the set of 
employees which have salaries is exactly the same as the set of 
employees which are assigned to departments (in the absence of 
null values, of course). This is a hidden constraint that one might 
argue should be asserted explicitly in an information model. 
(There’s nothing wrong with implementing that constraint by 
storing the data in record structures.) 
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9 The Other Three Popular Models 
 

 
n this chapter we comment briefly on the relational, 
hierarchical, and network models. There are two excuses for 
the brevity of this chapter. First of all, I don’t really explain 

the models, but just make some comments about them. Secondly, 
most of my concerns have been factored out to the previous 
chapter: much of what I’ve said about records carries over into 
these three models. 

To get more information about these data models, I would 
suggest the following as starting points: [Date 77], [Martin], 
[Chamberlin 76a], [Taylor], [Tsichritzis 76,77], and [Senko 77a]. 

“Ambiguity” is the principal theme of this chapter. Most of 
the comments on the three models focus on the diverse views 
from which each of them may be seen. When reading the 
literature on these models, try hard to get an understanding of the 
particular definition the author has in mind for the model in 
question. Try to determine which features he assumes are 
included, and which are not. It can be quite an experience to 
compare several papers nominally dealing with the same model. 

 
9.1 The Relational Model 

 
There is a mathematical definition of a relation, which is 

essentially the idea of a tabular structure. A relation of degree 
three, such as the one among parts, suppliers, and warehouses, 
may be represented as the set of rows in a table ⎯ i.e., as a set of 
triplets, with each triplet naming one part, one supplier, and one 
warehouse. 

The pure form of the mathematical relation allows a single 
box in the table to contain a set of things (a person may be 
related to the set of his children, with all their names listed in one 
square of the table). The relational discipline of “first normal 
form” excludes this from the relational model. 

Such formally defined relations (tables) do not always 
correspond exactly with the intuitive concept of relationships. 

I 
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The correspondence is good in one direction: every relationship 
of degree n can be modeled as a table with n columns. But not 
every table with n columns corresponds to an intuitively 
satisfying relationship of degree n. Many such tables really 
model entities (e.g., employees), together with an assortment of 
single-valued relationships and attributes for that entity 
(department, spouse, salary). The “real” relationships here are 
the separate ones between employee and department, employee 
and spouse, and employee and salary. It is only in a very formal, 
artificial sense that a relationship of degree four exists here. 

The most highly visible feature of the relational model is its 
tabular data structure. People who take this as its principal 
characteristic claim that anything which supports a homogeneous 
linear file (e.g., just about any old fashioned record processing 
technology) supports relational data. In this view, the relational 
model is no different from the record model discussed 
previously. 

A more significant feature is that all relationships (paths) 
among “records” are based on symbolic associations, i.e., 
matching field values. In the model perceived by users, there are 
no manipulative operations that depend on pointers, adjacency, 
or other hidden forms of linkage. (See sections 4.6, 10.5.2.) 

Note carefully that that last claim was not made for all 
relationships, but only for relationships between records. One 
should realize that there are two mechanisms for expressing 
relationships in the relational model: symbol matching, and 
coexistence in a row. A very large number of relationships, such 
as the one between an employee and a department, are in fact 
represented by whatever internal glue it is that holds the fields of 
a record together. 

Another distinguishing feature is the set-oriented nature of 
the operations, which deal simultaneously with sets of records 
instead of processing them one at a time. 

Still another view, reported by [Robinson], identifies the 
relational approach with the use of a language based on the 
predicate calculus, such as “Alpha” [Codd 71a]. 

Functional dependences, a normalization concept, candidate 
keys, and similar phenomena are involved in the definition 
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(creation) of relations. They seem to have an ambivalent role on 
the fringe of the relational theory. On the one hand, they do 
comprise a central part of the theory with respect to the 
definition of “proper” relations (cf. [Bernstein]). On the other 
hand, prototypes and implementations of relational systems 
simply presume that relations are normalized. Although some 
mathematical results concerning functional dependences have 
been developed ([Delobel], [Bernstein], [Armstrong], [Schmid 
75], [Fadous]), there is to my knowledge no existing system 
which processes functional dependences. And functional 
dependences never seem to be mentioned when the relational 
model is compared with others. Furthermore, they seem to be 
overlooked by proponents of the relational model themselves, 
when they claim that a strong feature of the relational model is 
the symmetry between descriptive and manipulative facilities. 

Constraints (enforced rules on the valid contents of relations) 
sometimes seem to be part of the relational model ([Eswaran], 
[Hammer]), and sometimes not. 

The “domain” concept itself has an uncertain status. In most 
definitions of the relational model, values in a column are 
constrained to come from a named domain (generally distinct 
from the column name). Furthermore, joins are only permitted 
by matching columns that have common domains (perhaps to 
insure that a common entity is serving as the “pivot” in the 
implied relationship). But some papers, and most 
implementations, only have a column name ⎯ no domain 
construct. Joins can be formed on any numbers or letters which 
can be compared, e.g., one can relate two people if the height of 
one is written down in a form that looks like the age of the other. 
Anyone 72 years old is related to me, since that’s my height in 
inches. 

It is sometimes argued that the domain construct limits joins 
to “sensible” relationships. Others argue that anything you can 
match implies a relationship; sensibility is in the mind of the 
relator. 

Even when there is a domain construct present, it often does 
not attempt to define common entities. All too often, domains are 
defined in terms of various classes of character strings (e.g., 
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integers, complex numbers, alphabetics, etc.). These are almost 
as bad as having no domains at all. 

More progress: define separate domains for things with 
common units of measure, but which aren’t really comparable 
entities. [Eswaran] illustrates this by distinguishing the domains 
for an employee’s height and his distance from work. 

But even if there is some attempt to relate to entities, it is 
invariably sets of symbols that get defined, not sets of entities. I 
have never seen a relational domain for employees, or for dates. 
The domains are always of the form: employee number, or social 
security number, or person name, or Julian date, or standard date 
⎯ each being a distinct domain. Thus one can’t match columns 
on the basis of common entities, but only on the basis of 
common names (representations). The matches are thus always 
subject to the failures mentioned in section 3.9.2. You can’t 
match on the basis of the same people occurring in two columns, 
if they are represented by employee numbers in one and social 
security numbers in the other. 

The construct in the relational model which would come 
closest to an effective domain concept would be a unary relation 
(e.g., a one column table of city names), linked to other relations 
by integrity constraints which require a city to exist in this list 
before it can be mentioned anywhere else. The practice of 
defining the “domain” of cities in syntactic terms (by data type) 
is much weaker: the only constraint really in effect is that a city 
is anything with an alphabetic name (section 2.4.3). This domain 
is in no sense equal to the set of city names. 

 
9.2 Hierarchies (IMS) 

 
In general use, the term “hierarchy” refers to a system of 

stratifying or ranking things one above another. Upper, middle, 
and lower class represent the hierarchical structure of certain 
societies. The various titles within the British nobility comprise 
another hierarchy. [Smith 77a] speaks of a “hierarchy of 
relations” in this sense. 

In a more restricted usage, the term can mean a tree-like 
system of relationships that tend to branch out in one direction. 
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An organization chart is an example: a person may have several 
subordinates, each of whom may in turn have several 
subordinates, etc. Or a parts breakdown: an item is made up of 
several sub-components, each of which in turn is broken down 
into its own sub-components, and so on until the elementary 
parts are identified. These trees represent “one-to-many” 
relationships. Traversing the tree in one direction, a person may 
have many subordinates; but going in the other direction, a 
person can have only one superior. 

Trees might represent relationships among different kinds of 
things, as in the grammatical analysis of a sentence. Subordinate 
parts of such a structure might represent various kinds of clauses, 
phrases, grammatical classes (nouns, verbs, etc.) and, finally, 
individual words. A certain kind of thing, such as a noun phrase, 
might occur at various levels. It might be a direct constituent of 
the sentence, or it might be a subordinate part of a clause, and so 
on. Individual words might occur at any depth in the tree, 
depending on the complexity of the grammatical structures in 
which they occur. 

A further restriction on the hierarchical structure fixes the 
levels on which various kinds of things may occur. Each kind of 
thing occupies one specified level in the structure; things of the 
same kind cannot occur at different levels of the hierarchy. A 
corporate structure might be represented in this way, with the 
corporation at the top, its divisions at the second level, the 
departments on the third level, and the employees on the fourth 
level. While a given kind of thing cannot occur on more than one 
level, several kinds of things might occur on the same level. The 
corporate tree might also have on the third level the products 
manufactured by each division, and on the fourth level it might 
also have the capital equipment owned by each department. 
Hierarchies in which the same kind of thing might occur at many 
levels, such as the personnel organization chart, the parts 
breakdown, and the sentence analysis, do not fit this restricted 
structure. 

The common jargon for describing such structures has 
absorbed some very mixed metaphors. The structure is described 
as a “tree”, but it is almost always perceived upside down, with 
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“root” being a reference to the top of the tree. In addition, the 
terms “parent” and “child” are frequently used to denote relative 
positions in the tree. In the corporate structure, a department is 
the “child” of a division, and the department is also the “parent” 
of an employee. 

The “hierarchical data structure” supported by such systems 
as IMS corresponds to the most restricted form we have 
described. It is a tree-like set of one-to-many relationships, in 
which each kind of thing occurs at a single specified level of the 
hierarchy. One database (or file) in IMS consists of a family of 
trees, each having the same “pattern”. Thus, one file may contain 
a number of corporate trees of the form described earlier. At each 
node (junction) of the tree corresponding to some object, there is 
a “data segment” whose fields contain information about that 
object. For example, a data segment at the division level of the 
corporate tree might contain the division name, the name of its 
president, and its headquarters location. 

IMS uses the term “record” in a different way than I have in 
this book. An IMS “record” (sometimes called a database 
record), consists of one entire tree, from one “root” segment 
through its lowest related segments. In our example, it would 
include all the data about one corporation and its substructure. 
My use of the term “record” ⎯ a contiguous sequence of fields 
transmitted as a unit ⎯ corresponds more closely to an IMS data 
segment. 

The one-to-many relationship is central to the IMS concept: 
a segment has exactly one parent segment (except a root, which 
has no parent). However, IMS does allow the definition of 
structures that are not so constrained. Using a construct called 
“logical relationships” one can, for example, define a department 
segment as being subordinate to a “geographical region” 
segment as well as to a division segment. Thus a department 
might in fact have two parents: a division and a region. Logical 
relationships can also be used to (indirectly) represent many-to-
many relationships, such as the one between students and 
classes. While such structures can be defined, programs cannot 
process them (as a single file). For processing purposes, it is 
necessary to define subsets of the data (“logical files”) which 



161 

only encompass tree-like structures. Such a file might see 
departments as subordinate to divisions or to regions, but not 
both. Thus the IMS concept of tree-like structures is imposed on 
the files which programs can process, but not necessarily on the 
underlying data maintained by IMS. 

On the other hand, a program can process several such files 
at the same time. It can in fact perceive that a given department 
is subordinate to a certain division and also to a certain region, 
by looking into the two logical files. (Technically, one can claim 
that it is not the “same” department segment that has these two 
parents, since a separate segment is perceived for the department 
within each file.) Thus, while the IMS data model is generally 
held to be a tree-like hierarchy, it can in fact sometimes appear to 
be a more complex structure. 

Curiously enough, in some respects the IMS structure looks 
less complex than a hierarchy. For data retrieval, the file looks 
essentially like a flat, linear sequence of segments. There is a 
standard, IMS-defined ordering of these segments (top to 
bottom, left to right), and data retrieval operations are defined in 
terms of this sequence. The principal operations supported by 
IMS consist either of retrieving the segments sequentially or of 
skipping forward to the next segment of a specified type 
containing a specified value. The semantics of retrieval 
operations are always explained in terms of this linear ordering. 
Certain operations which might be thought characteristic of tree 
structures are not provided, such as moving upward (from a 
segment to its parent), or detaching a sub-tree and re-attaching it 
at another point. (Strictly speaking, it is sometimes possible to 
move “up” as well as “down” over certain data, if appropriate 
logical relationships are defined and a separate file is used for 
each direction of travel.) 

The situation with IMS and hierarchies is the same as with 
most implementations of data models. There usually are 
important differences between the implementation and the naive, 
abstract view of the data model. Several implementations of the 
same data model may behave quite differently. In general, 
criticisms and comparisons should begin by clarifying whether 
the subject in question is a data model or an implementation. 
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9.3 Networks (DBTG) 

 
They aren’t the same: networks and the DBTG model. I’ll 

come back to that soon. 
To me, the central semantic innovation of DBTG is the 

named relationship ⎯ that’s what their “sets” really are. It is the 
only major model which provides this as an integral part of its 
semantics, but its significance seems to be largely unnoticed 
(although Bachman has remarked “I consider data structure sets 
as representing natural relationships which exist in the real 
world” [Bachman 75]). 

Unfortunately, DBTG only grants such status to relationships 
that are one-to-many. Many-to-many relationships still have to 
be recorded in “intersection” records; in these cases it is the 
records, and not the sets, which represent the relationship. It is 
sometimes argued that DBTG supports many-to-many 
relationships by providing such a mechanism, but in fact the 
system does not know anything about this. The system doesn’t 
know the difference between an intersection record and a record 
that happens to be a “member” in several sets (see section 8.4.3). 
DBTG doesn’t “support” many-to-many relationships; it doesn’t 
even know that they are there. 

Some people equate DBTG with a ring-structured 
implementation of it, and they deplore its “spaghetti” of pointer 
chains. 

Still others focus their critical comparisons on the 
manipulative language specified in the DBTG proposal. Such 
critics fail to see the possibility of developing a better language 
(exploiting the semantics of named relationships), much as a 
language like SQL shields users from relational joins and 
projections. Such critics also overlook the disclaimer on page 7 
of [CODASYL 71]. 

In particular, some associate DBTG with a procedural 
language, contrasting it with the set-theoretic language of the 
relational model. The procedurality is sometimes labeled 
“navigation”. 
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There are criticisms that focus on parts of the DBTG 
proposal which have nothing to do with the data structure (things 
like database keys, currency indicators, realms ⎯ cf. [Engles 
71]). Objections to such features should not be misconstrued; 
they are not objections to the basic model. 

The developers of DBTG judiciously chose the word 
“network”, rather than “graph”. “Graph” is a mathematical term, 
having some well-defined and much studied properties. 
“Network” informally conveys the same idea as “graph”, without 
any real obligation to retain the same properties. Lest anyone 
confuse the two, let me indicate how a DBTG network differs 
from the general form of a directed graph with labeled edges: 

 
• Nodes in the network are not elementary items. They are 

records. Thus much of the data content is already 
aggregated out of the graph structure. 

• Nodes are partitioned into classes called “record types”. 
• Many edges in the graph bear the same label. A DBTG 

“set” consists of all the records connected by edges 
bearing the same label. That label is the name of the set 
(and also the name of the relationship that associates 
these records). 

 
“Owners” are the records at the tails (sources) of the directed 

edges. “Members” are the records at the heads (targets) of the 
edges. A DBTG “set occurrence” consists of one owner record 
and all the members to which it is connected by edges labeled 
with the set name. 

 
• All edges bearing the same label must emanate from 

nodes of one type (a set has only one owner record type). 
• A node may not be the target of two edges bearing the 

same label (a set is a 1:n relationship). 
• An edge may not connect two nodes of the same type (a 

set’s member record types may not include the owner 
record type). 
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Hence a homogeneous graph (all nodes of the same type), 
such as an organization chart, cannot be directly represented in 
the network. It can be represented indirectly by introducing an 
“intersection record” as a second record type, and using two 
labels: one for the “from” sense of the association (manages), 
and one for the “to” sense (is managed by). 

The same device is required to represent m:n relationships. It 
is sometimes claimed that such constructs “represent” a 
generalized graph in the network; all you have to do is visualize 
the intersection records as part of the edge structure, and not 
think of them as nodes. 

 
• As a corollary, an edge cannot connect a node to itself. 
 
Now a caveat: not everything I’ve said about DBTG is true. 

Since I first wrote this material, some changes to the Codasyl 
specifications have been adopted, and others are being 
considered. Which only goes to show that we are dealing with a 
moving target. You have to be very careful when discussing “the 
network model” to establish whether you have in mind some 
fixed, abstract structure, or whether you are referring to the 
Codasyl specifications, and, if the latter, which version. 
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10 The Modeling of Relationships 
 

 
aving examined some of the major data models, we are 
now in a better position to explore some other issues and 
problems in the modeling of relationships. 
 

10.1 Record Based Models 
 

As suggested in section 8.3, the record oriented approach 
fosters an asymmetry in the treatment of relationships. One-to-
many relationships are given fundamentally different treatment 
from many-to-many relationships. [Martin] refers to many-to-
many relationships as “complex plex structures”, and says “The 
reason for making the distinction between simple and complex 
plex structures is that the latter need more elaborate methods for 
representing them physically.” 

This treatment arises from the traditional aversion to 
repeating fields in a record, and from the convenience of 
lumping two things into the same record when there happens to 
be a singular relationship between them. 

These options are all in addition to representations of 
relationships by means of file structure. These might include 
such techniques as record sequencing within a file, or placement 
within a hierarchy or CODASYL network. Even here the choices 
are constrained by the semantics of the relationship. Structural 
representations typically can only be used for certain kinds of 
relationships, and not for others. For example, the structural 
representation in hierarchies (of the IMS variety) may not be 
used for relationships between records of the same type. 

The difficulty with respect to information modeling is what 
to do with this plethora of options ([Codd 74], [Nijssen 75]). 
Why is it necessary to make such choices? What are the criteria? 
Do the criteria have anything to do with the semantics of the 
information, as distinguished from the economics of storing or 
processing the data? Do all users have to know which options 
have been chosen, and to adapt their processing accordingly? Is 

H 
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there any implied unavailability of other options, e.g., could one 
still retrieve a department record containing a list of employees? 

The techniques an application employs need only be 
concerned with the complexity of a relationship in the direction 
the application is traversing it. The only difference it really 
makes to the application is whether it should expect, and allocate 
space for, one or many items in response. 

Unfortunately, the choice of representation too often does 
show through to impact the way users use the information, and 
the way application code has to be written. If someone wanted 
information about all employees in a department, there are likely 
to be different kinds of paths for current and for past 
assignments. For current assignments, we can go directly to the 
employee records; for past assignments we must navigate 
indirectly via the employment history intersection records. Yet in 
both cases we are dealing with a relationship between employees 
and departments. In this respect, listing the employees in a 
department need be no different from listing the parts in a 
warehouse. It doesn’t matter to these applications that the parts 
might also be in other warehouses, whereas the employees 
cannot also be in other departments (i.e., when traveling in the 
complex direction, it needn’t matter whether the relationship is 
1:n or m:n). 

In current technology, such applications have to use two 
conventions for these cases, following direct linkages for the 
employees in a department, but detouring via intersection 
records for the parts in a warehouse. And, if corporate policy 
changes to permit employees to have several departments, then 
the first application has to change the way it asks the question, 
even though the question and the answer are unchanged. 

The choice of representation also affects the way 
applications do updates. For example, moving an employee from 
one department to another is done by a simple record update, if 
the department number is kept in the employee record. But if the 
relationship is kept in an intersection record, then changing the 
department number is changing the key. Changing keys creates 
problems in many systems, and often is not permitted at all. In 
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such cases, this “update” must be done by deletion and insertion 
of records. 

For descriptive purposes, it might be desirable to seek a 
method for declaring such relationships and their semantic 
characteristics directly, without having to choose among such a 
variety of representational alternatives. 

 
10.2 Binary Versus N-ary Relationships 

 
An “n-ary” relationship has degree n. “Binary” and “ternary” 

relationships have degree two and three, respectively. 
Relationships of degree greater than two can be described as 

combinations of binary relationships. This follows from the 
observation that an instance of a relationship is itself a thing that 
can be related to other things. There are two ways of reducing n-
ary relationships to structures of binaries. We will describe one 
here, and introduce the other in section 10.4. 

Consider a ternary relationship among parts, warehouses, 
and suppliers, wherein a given part may be ordered from certain 
suppliers for one warehouse and from different suppliers for 
another warehouse. We can start with the binary relationship 
between parts and warehouses, i.e., which part is stored in which 
warehouse. Let’s call this relationship “allocations”, and call 
each instance of a part assigned to a warehouse an “allocation”. 

Notice the influence of language on our thinking. By having 
the single noun “allocation” for it, we can comfortably think of 
the instance of the relationship as being a thing in itself. Calling 
it “a part stored in a warehouse” doesn’t give it the feeling of a 
“thing”. 

We next define the binary relationship between suppliers and 
allocations. This binary relationship literally identifies which 
supplier services which allocation. But, through our 
understanding of allocations, we know that it really means which 
supplier sends which part to which warehouse. We have thus 
defined the ternary relationship as a pair of binary relationships, 
which we can denote symbolically as PW and S(PW). 

We use the following notation: “PW” stands for the binary 
relationship between parts and warehouses. “SPW” stands for 



168 

the ternary relationship between suppliers, parts, and 
warehouses. “S(PW)” stands for a particular decomposition of 
this relationship; it is the binary relationship between suppliers 
and the binary relationship between parts and warehouses ⎯ i.e., 
it is the binary relationship between suppliers and allocations. 
For simplicity, we are assuming that one domain is the same as 
one category. Also, the ordering of domains is not relevant to this 
discussion, and we can therefore ignore permutations of letters. 
PW is the same as WP; SPW, PSW, PWS, etc., are also all 
equivalent to each other. 

Of course, S(PW) is not the only way we could have 
decomposed the relationship. An equivalent verbal description of 
the ternary relationship is that when we order the part from one 
supplier we may have it sent to certain warehouses, while we 
may have other suppliers send the same part to other 
warehouses. Now we are thinking first of a binary relationship 
between parts and suppliers, which we can call “zorgs” (because 
I can’t think of a good descriptive noun). Then we construct the 
binary relationship between zorgs and warehouses. This time we 
have decomposed the ternary relationship into the two binary 
relationships PS and W(PS). 

And, in similar fashion, we can rationalize a third 
decomposition, into the pair of relationships WS and P(WS). 

There are always multiple ways to decompose relationships 
of higher degree into binary relationships. We have seen the 
three possibilities for decomposing ternary relationships. For 
degree four, there are 15 different ways: PSWT can be 
decomposed into the forms P(SWT), S(PWT), W(PST), and 
T(PSW), with the ternary relation in each of these being 
decomposable three ways, plus the forms (PS)(WT), (PW)(ST), 
and (PT)(SW). 

An example of the form (PW)(ST) is interesting to look at, 
because it illustrates how instances of relationships are 
themselves things which can be related to each other. We can 
take P and W to be parts and warehouses as before, with the 
relationship PW still called “allocations”. S is still suppliers, and 
T is now truckers: PSWT is the relationship that certain suppliers 
use certain truckers to deliver certain parts to certain warehouses. 
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There is a relationship ST between suppliers and truckers ⎯ 
which suppliers use which truckers ⎯ and we can arbitrarily call 
these “sources”. A “source” is a combination of one supplier and 
one trucker. The relationship PSWT can now be expressed as the 
binary relationship (PW)(ST) between allocations and sources: 
which source services which allocation. This new relationship is 
relating instances of two other relationships. 

 
10.2.1 Simplicity 
 

The reason we dwell so long on these decompositions into 
binary relationships is that some important data models are 
founded on such decompositions. From some points of view 
binary decomposition may be the best and simplest way to 
describe all relationships. 

The main advantage of such decompositions is that they 
permit any relationship to be built out of a single kind of 
building block (the binary relationship), giving the description of 
all relationships a very regular format [Titman]. Hence, it is 
“simpler”. 

Whether or not you believe that depends on what you mean 
by simplicity. Simplicity is very much a subjective notion, and 
we can give it at least two interpretations. On the one hand, 
simplicity in a descriptive language (for data or programs or 
anything else) means minimizing the number of different terms 
that can be used in the description, thus minimizing the number 
of terms that have to be learned by users and implemented in the 
system. The regularity of binary relationships provides this kind 
of simplicity. According to this criterion, Roman numbers are 
simpler than Arabic, since they use fewer different characters 
[C&A 70]. For that matter, binary notation must be the simplest 
of all. Also, by this criterion, the simplest computers of all are 
Turing machines. Would you like to program your application on 
one? 

On the other hand, simplicity is achieved when descriptions 
can be written concisely, and can be carried on paper and in the 
mind as single broad concepts rather than complex bundles of 
tiny concepts. This kind of simplicity is provided, for example, 
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in the relational model, which can directly accept a definition of 
a PSWT relationship, rather than requiring a sequence of 
definitions such as WT, S(WT), P(S(WT)). This kind of 
simplicity is achieved at the cost of requiring the system to 
understand a larger variety of constructs (i.e., relationships of all 
possible degrees). It is often argued that this wealth of additional 
constructs is redundant and adds no new function, since 
everything can be expressed in terms of the “primitive” 
constructs, e.g., binary relationships. 

We can further illustrate the concepts, and problems, in a 
system for specifying arithmetic expressions. Consider one 
language that has terms for expressing addition, division, and 
counting, and another language that has all these plus a term for 
“average”. Both languages have the same functional capability 
for describing things. The first is simpler because it has fewer 
terms to be defined, learned, and implemented. But the second 
language is obviously easier to use if you want to compute an 
average. To average a LIST of values, one writes 

 
X = SUM(LIST) DIVIDED-BY COUNT(LIST) 

 
in the first language, and 

 
X = AVERAGE(LIST) 

 
in the second. 

 
We might observe that each kind of simplicity is appropriate 

to a different level in the system. The first language is 
appropriate to a low, internal, implementation level of the 
system, where implementation cost is of primary concern. The 
second language is appropriate to a higher external interface that 
is seen by users. Some kind of transformation process is required 
between the levels, such as a language translator which takes the 
second statement above as written by a user and transforms it 
into the first statement above to be executed by the system. This 
corresponds, for example, to the implementation of a relational 
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database on top of an interface dealing only in binary 
relationships. 

This split-level approach has some disadvantages. Since the 
direct intent of the user is not transmitted to the underlying 
system, the system may not be able to optimize and perform the 
function in the best possible way. In the averaging example 
above, the system executing the first statement is likely to take 
two passes through the list, once to accumulate the sum and 
again to count the elements. If the system understood “average” 
directly, it would do both in one pass. 

In a nutshell, simplicity can mean either a small vocabulary 
or concise descriptions. Both have their value. 

Incidentally, let me mention still a third kind of simplicity, 
which may be even more important than the other two in the area 
of data description. This is “familiarity”. The easiest system to 
learn and use correctly may well be the one that is closest to 
something already known, regardless of how objectively 
complex that may be. It is precisely this phenomenon, for 
example, which makes the metric system of measurement much 
less simple for me (and many of my readers) to use, although it 
is obviously simpler by any objective criterion. The trouble with 
this approach, of course, is that it is subjective and depends very 
much on who the users are. How do you measure it? And does it 
require supporting a number of systems, each “familiar” to a 
different group of users? 

And there is this hazard: the apparent familiarity can also 
lead users astray, in those cases where the system does not 
behave the same as the thing they are familiar with. 

 
10.2.2 Unnecessary Choices 
 

Another concern arises from the fact that in describing an n-
ary relationship as a composition of binary relationships, one has 
to select one of the many possible compositions. That is, one has 
to decide whether to specify PWS as P(WS), W(PS), or S(PW). 
There is often nothing in the way that users think of this 
relationship to prefer one form over the other two. Hence this 
arbitrary choice should not have to be made in the conceptual 
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model of the information system. Also, there is a danger that this 
form of specification may become entangled in implementation 
and performance concerns. The specification P(WS) suggests an 
implementation in which people just interested in the 
relationship between warehouses and suppliers, i.e., WS, will get 
better service than those interested only in parts and warehouses, 
i.e., PW. Any such implication in the conceptual model should be 
avoided. An administrator should be free to change the 
implementation structures and performance optimizations 
without having, for example, to respecify P(WS) as S(PW). 

 
10.3 Irreducible Relationships 

 
“Irreducible relations” ([Rissanen 73], [Hall 76], [Falkenberg 

76a]) is an area of relational theory which attempts to reconcile 
record structures with the requirements of accurate information 
modeling. The general idea is to model information in terms of 
elementary facts, generally (but not always) leading to binary 
relationships analogous to records having just two fields. For 
example, an employee record that included his spouse and 
birthplace would be reduced to two records, one containing the 
employee and spouse and the other containing the employee and 
birthplace. The original record can always be recovered from 
these by combining the known information about the employee 
(in relational terms, by a “join” operation). 

This recoverability aspect is the essential test of reducibility. 
A record is reducible if shorter records can be defined which can 
be so combined to recover the original record. Such a reducible 
record has not been decomposed into its elementary facts. In 
contrast, an irreducible record is considered to represent one 
elementary fact, since it cannot be reconstructed from smaller 
units of information. Note that the danger is not that information 
will be lost, but that the reconstruction process will generate 
spurious (and false) data ⎯ as the next example illustrates. 

An example of an irreducible record with more than two 
fields would be one representing the ternary relationship between 
suppliers, parts, and warehouses (“which supplier ships which 
part to which warehouse”). If we try to reduce this to shorter 
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records, e.g., one with suppliers and parts and one with suppliers 
and warehouses, we cannot accurately recover the original 
information. These short records might tell us that a certain 
supplier supplies a certain part, and that this same supplier 
services a certain warehouse ⎯ but we can’t be sure that he 
ships that part to that warehouse. A reconstruction from the short 
records will generate that combination, whether or not it is a true 
fact. A similar analysis holds if we try to reduce to other pairs, 
e.g., a record with parts and warehouses plus one with parts and 
suppliers. Thus in this case the records with three fields are 
irreducible ⎯ they represent elementary facts. 

This modeling approach has the advantage of modeling the 
actual structure of the information. Elementary facts are clearly 
identified, and the structure is more describable: a record type 
name (relation name, in the relational model) can correspond to 
the relationship or attribute expressed in the fact, and field names 
can be used to name the roles played by the entities associated by 
the fact. The approach still suffers from some of the record 
structure problems, e.g., those having to do with synonyms and 
with the representation of relationships having multiple entity 
types per domain (as mentioned in section 8.8.4). 

Reducing records (or relations) to such elementary facts has 
a side effect that is considered by some to be a disadvantage. 
Keeping things bundled into one record type implicitly enforced 
a co-extensiveness constraint. In effect, the set of employees who 
earned salaries always had to be exactly the same as the set of 
employees who were assigned to departments. By separating 
these into independent elementary facts, we introduce the 
possibility of adding or deleting one fact separately from the 
other. The constraint that had been implicit in the structure now 
has to be made explicit, to the effect that employees may earn 
salaries if and only if they are assigned to departments. 

 
10.4 Good and Bad Binaries and N-aries 

 
There are some differences of opinion concerning the 

relative merits of binary and n-ary relationships, and also 
concerning the merits of the relational model. 
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Where do I stand? There happen to be just enough 
ambiguities in the definitions of the various models that I cannot 
answer that question. I face these dilemmas: 

• There are two ways of employing n-ary relations, one of 
which I consider good and the other bad. So I can’t take 
a stand on n-aries. 

• There are similarly two ways of applying a binary 
model, again one good and one bad (and one might even 
say that the good one isn’t really modeling binary 
relationships). No simple opinion here, either. 

• Most amazingly, the good n-ary and the good binary 
look the same to me! So, when I tell you what I like, I 
still can’t say if it’s binary or n-ary. 

• And, for good measure, I can’t be sure which of these 
models is considered to be relational. (But I’m sure 
many of my readers are. I’d love to poll them.) 

 
10.4.1 The Binaries 
 

Many things are simpler when we can deal with things 
pairwise, two at a time. Binary relations fit a simple linguistic 
model, two objects connected by a relating verb: people own 
cars, employees are assigned to departments, parts are stored in 
warehouses, etc. They also lend themselves to a natural picture: a 
line connecting two points (or nodes). 
 

P W
 

The pure binary approach forces everything into this pattern, 
even when more than two things are involved. This exploits the 
fact that relationships are themselves entities, which can then in 
turn be related to other things. So, if three things are involved, 
we first link two of them to generate a new entity, which then 
gets linked to the third thing. There happens to be three distinct 
ways of doing this (section 10.2). For suppliers (S), parts (P), 
and warehouses (W), these are: 
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P W

S

P S

W

S W

P

 
I don’t happen to think this is a good approach. One 

shouldn’t be faced with making an arbitrary choice among such 
alternatives. And the structures get more complex than they need 
to be, especially if even more than three things are involved. 
When there are four (such as suppliers, parts, warehouses, and 
truckers), the number of different pictures to choose from is 
fifteen! You can work them out; here’s two samples to get you 
started: 
 

P W

S

T

S W

P T

 
I haven’t had the courage, or the patience, to compute the 

number of ways of combining five things. 
At any rate, whether you agree with my opinion or not, those 

are what I call “bad binaries”. 
There is another way to perceive the relationships as entities. 

We can imagine that there does in fact exist a single relationship 
among the three things simultaneously, and treat that as an entity 
in its own right. In [Bracchi], a class of such new entities is 
called an “internal set of concepts” (ISC). 

In representing the relationship between a part, a supplier, 
and a warehouse, each of these is linked to the object 
representing the relationship among them: 
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P WS

X

 
If we want to call this new entity X, we have in effect used 

the three binary relationships PX, SX, and WX. There is only 
one such configuration, not three to choose from, and we are still 
basically using a binary model. Similarly, if Y was a 
simultaneous relationship among four things, the configuration 
would be represented as the four binary relationships PY, SY, 
WY, and TY. Again, there is only one configuration, not fifteen 
options. 

Let’s refer to that approach as “pseudo binary”. I’ll explain 
why shortly. 

Some people have modified the binary model in a different 
way. The limiting factor in the familiar graph picture is an 
elementary bit of geometry: a line segment has two endpoints. 
Why should we be constrained by an irrelevant geometric 
truism? Why can’t we imagine a “hyper” line segment with 
many endpoints, as some kind of generalized connector? We can, 
and the resulting structures are called “hypergraphs” [Furtado]. 
That is, we can imagine them, but not draw them ⎯ at least not 
with simple lines. But there is a picturing convention for 
hypergraphs, in which a connector is drawn as a box around the 
things it connects. Since many of these boxes will overlap 
(because a thing might participate in many relationships), there 
can be some confusion as to which things belong to which box. 
To avoid that, lines are drawn to link things with the boxes they 
belong to. (Another reason for the lines is so that they can be 
labeled with the role being played by each object in the 
relationship.) Thus, a relationship among P, S, and W would be 
pictured as the box: 
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P W

S

 
This appears to be an entirely different approach, but with a 

flick of the wrist we can be right back to a familiar picture. This 
hypergraph approach is in fact isomorphic with the “pseudo 
binary” approach just described. All we have to do is: 

1. Flip P, S, and W outside of the box, taking their 
connecting lines with them. 

2. Shrink the box to a point. 
3. Label the new point “X”. 
And presto, we have a familiar picture of the relationship 

between P, S, and W: 
 

P WS

X

 
There is one difference: with hypergraphs, one does not have 

the ability to treat the connectors (boxes) as being points 
themselves, hence they cannot in turn be connected to other 
things. Pseudo binaries do have this added capability. 

To be consistent, treating relationships as entities requires a 
new object to be introduced even if only two things are being 
related. That is, a relationship between P and W ought to be 
modeled, not as 
 

P W
 

but rather as 
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P W

Z

 
This practice is in fact commonly followed when the 

relationship happens to be many-to-many, giving rise to so-called 
intersection records (section 8.3). But the practice is rarely 
employed for one-to-many relationships. Even [Bracchi] fails to 
achieve this level of consistency in the treatment of relationships. 

Why have I been referring to these as “pseudo” binaries? 
There is a certain hoax being perpetrated throughout all of 

this. Such models are still labeled as “binary relations” ⎯ but it 
is n-ary relations that are being modeled. They have just been 
shifted from the lines to the nodes. The pictures look the same 
for the pure and pseudo binaries ⎯ they both involve lines 
connecting pairs of nodes ⎯ but the semantic interpretations of 
the two diagrams are totally different. 

In the pure binaries, the lines are serving to represent the 
relationships that are being modeled. Just consider what labels 
would be written along the lines: they are the names of the 
relationships. 
 

Rover Spot

Harry

owns owns

 
In contrast, in the pseudo binary model the relationships of 

real concern are themselves nodes. The lines are serving an 
entirely different function, which can actually be seen a little 
more clearly by their counterparts in the hypergraph picture. 
These lines are merely serving as a kind of internal glue, 
connecting a relationship node with each of the things it is 
relating. If there are any labels along these lines, they would be 
role names rather than relationship names. 
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Harry Spot

Owns

owner property

 
Thus the similarity between pure and pseudo binaries is very 

superficial. While there is a trivial resemblance in the formats of 
their pictures, there really is a deep semantic difference between 
the two: pseudo binaries are in fact supporting n-ary 
relationships, while pure binaries require decompositions into 
pairwise relationships. The pure binary approach denies the 
existence of relationships involving more than two things at a 
time. In that view, the shipping of parts to a warehouse by a 
supplier is not a single indivisible fact. It must be viewed instead 
as a composition of smaller facts, e.g., fact 1: parts are shipped to 
warehouses; and fact 2: suppliers perform fact 1. In contrast, the 
pseudo binary view acknowledges the existence of a single 
complex fact, and simply draws a picture connecting the fact 
with each of its participants. 

Despite the pejorative connotations of the term, I hope it’s 
clear that I prefer the “pseudo” binary model. 

 
10.4.2 The N-aries 
 

An n-ary relation can be pictured as a table with n columns, 
each column having a heading. Consider two different relations, 
having the headings 
 

SALARYEMPLOYEE DEPT

 
 
and 
 

SUPPLIERPART WAREHOUSE
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In developing an abstract model of information, one might 
have an intuitive desire to indicate which are the “elementary 
facts”. One can have an intuitive feeling that the first relation 
above is a conglomerate of two elementary facts, since we can 
speak of the department of an employee independently of his 
salary. In contrast, one might feel that parts, warehouses, and 
suppliers comprise a single interdependent fact, since a given 
part for one warehouse comes from one supplier, while the same 
part for another warehouse comes from another supplier. 

Some people make a counter-claim: you can just as easily 
perceive that a department having an employee making a certain 
salary is in itself a single fact inter-relating three things. Thus we 
have some difficulty in objectively sorting out “elementary 
facts” from hodge-podges of multiple facts. 

There is one objective criterion that has emerged, in the 
notion of “irreducible” relations, which we covered in section 
10.3. Those are my “good n-aries”. 

In comparing irreducible n-aries with pure binaries, one 
might find an analogy with linguistic terms: the singular n-ary 
form might be likened to the “deep structure” of a sentence, 
while the multiple ways of decomposing it into pure binaries 
corresponds to the multiple “surface structures” (sentences) that 
have the same meaning. 

 
10.4.3 A Vanishing Distinction 
 

To sum up on the issue of binary vs. n-ary: I do not see the 
desirability of being limited to purely binary relationships, hence 
I prefer n-ary relationships. That does not mean that I defend n-
ary relations ⎯ I only like the kind that are irreducible. 

But I’m not opposed to binary relations either. That is, I do 
like the pseudo binary model ⎯ which most people still refer to 
as a binary model, although it models n-ary relationships. 

Have I made that perfectly clear? 
It’s really simple: out of all this assortment, I prefer one 

model ⎯ which is simultaneously the pseudo binary and the 
irreducible n-ary. Let me try to explain why I see negligible 
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difference between them, at least in the essential structure of the 
model of a ternary relation. 

In the pseudo binary model, we link four objects to model a 
relationship among a part, a warehouse, and a supplier: 
 

P WS

X

 
In the irreducible n-ary relational model, we also have four 

objects. There is one record each for the part, the warehouse, and 
the supplier, containing information about those entities. And 
there is the intersection record with three fields, containing the 
keys (identifiers) for that part, that warehouse, and that supplier: 
 

SamPin

(warehouse record)West

intersection recordWest

(supplier record)Sam

(part record)Pin
 

 
We can make the geometries of these two representations 

look alike. We are only dealing with differences in the portrayal 
of the linkages. 

In the pseudo binary model, we draw explicit lines, 
suggesting some kind of internal pointer mechanism in the 
implementation. In the relational model, on the other hand, 
linkages are discovered by matching symbols (in this case, the 
identifiers in the intersection record match the keys of the other 
records). If we draw lines between the matching symbols, we see 
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a topology quite identical to that of the pseudo binary model. 
Thus, if we ignore the specific technique for achieving linkages, 
the two models look quite alike. 

 
10.4.4 Case Models 
 

There is still another path of development converging on this 
general model form. [Furtado] observes that linguistics based 
models portray a case structure for sentences that looks very 
much like our pseudo binary diagrams. The sentence is the n-ary 
relationship object, its constituents are the objects it is relating, 
and the lines represent the cases (roles) assumed by those objects 
in the sentence. 

 
10.5 Which Relationships Are “In the System”? 

 
In section 2.3 we observed that some information is explicit 

in the system, some is implicit (derivable), and we can’t always 
sharply distinguish the two cases. The same obtains with 
relationships. 

 
10.5.1 Explicitly Defined Relationships 
 

Explicit declaration of relationships permits their properties 
(such as those described in sections 4.2 and 4.3) to be specified 
directly to the system, to be enforced independently of the 
representation of the relationship. 

Unless names of relationships are known as part of the data 
content of the system, it is difficult to answer such queries as: 

 
• “What relationships exist between x and y?” 
• “In what relationships is x involved?” 
 
When the manipulative interface is expressed directly in 

terms of named relationships, then there is considerable latitude 
in the manner of representing the relationships, with the 
alternatives being hidden from the user. Representation options 
include: 
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• Symbolic linkages via matching field values. 
• Internal linkages such as pointers. 
• Inclusion of such linkages with other attributes of the 

entities involved (e.g., pointing to or naming each other). 
• Inclusion of such linkages in a separate structure (e.g., 

intersection records) that represents the relationship. 
• Computational procedures, such as composition of other 

relationships, or comparison of attribute values. (Such 
procedures could only be used for inquiry, not for 
modification of relationships.) 

 
With named relationships, the syntax and semantics of 

queries can be made simple and uniform, independent of the 
method of representing relationships. (Also, the form of the 
query is likely to be closer to the natural language form.) For 
example, an inquiry regarding an “is employed in” relationship 
could conceivably be handled by a procedure that searches 
employment history records, looking for the department to which 
the employee was most recently transferred. An assertion that 
someone “is employed in” a certain department could be handled 
by making a new entry in the employment history to the effect 
that the employee was transferred into that department today (or 
else the assertion might also provide an “as of” date). Some users 
would appreciate not having to know that this was the 
implementation of the relationship. 

As another example, consider the inquiry “find all 
employees located in Stockton”. In a record oriented model 
without adequate capability for naming relationships, the user is 
obliged to discover that locations are specified in department 
records. This user has to formulate a query which selects the 
records of departments located in Stockton, and then finds the 
corresponding employees. In SQL ([Astrahan 75], [Chamberlin 
74]), for example, the query would take the form 
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SELECT NAME 
FROM EMPS 
WHERE DEPTNUM IN 

SELECT DEPTNUM 
FROM DEPTS 
WHERE LOC = ‘STOCKTON’ 

 
In contrast, if the user were provided with a defined 

relationship named “located in”, then he need not know whether 
location information is contained in employee records, 
department records, or division records. This user is simply 
interested in who works where; he need not be responsible for 
knowing current corporate practices regarding the centralization 
of divisions or departments. 

This approach works better for inquiries than for updates. To 
change an employee’s location, one does have to know whether 
employees can move about independently, or are constrained by 
the location of their departments or divisions. This knowledge 
can be gleaned from the organization of the relations ⎯ i.e., the 
functional dependences ⎯ in a relational database. It can also be 
specified in consistency rules in a model that describes 
relationships directly. 

Named relationships need not be implemented by internal 
structures such as pointer chains. They could be provided by 
means of “macro” facilities in the interface languages. For 
example, a macro facility could conceivably be added to the SQL 
language, whereby a macro named “located-in” could be defined 
to expand into the SQL text illustrated above. An end user might 
then formulate his query as “find employees located in 
‘Stockton’“, without knowing or caring about macro expansions, 
functional dependences, pointer chains ⎯ or even network vs. 
relational models. 

Of course, that same “located-in” relationship could also be 
presented to the user in the tabular form of the relational model. 
There could be an interface at which the (apparent) existence of 
such a relation is maintained for the user, independent of the 
manner in which it has to be materialized from the real 
underlying data (cf. [Boyce]). 
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Having named relationships as an integral part of the model 
is much the same idea as perceiving the model as a set of 
functions [Folinus]. The external user understands the 
information system by knowing the names and descriptions of 
the functions, the required arguments, and the expectable return 
values. The functions correspond directly to the user’s semantic 
understanding of the information. The implementation of the 
functions is hidden from the user. 

The “links” of [Tsichritzis 75a] and the “selection structures” 
of [Earnest] also relate to the concept of specifying named 
relationships. 

 
10.5.2 Implicit Relationships 
 

There is a disadvantage to systems that deal only in named 
relationships. They limit the user to following paths that have 
been previously declared by a data administrator, and make it 
difficult to follow paths implicit in other data stored in the 
system. 

As mentioned in section 4.6, if two entities are related to a 
third in any way, then that in itself constitutes a relationship 
among the first two. One employee might work in the same 
department as another. The secretary of a department probably 
serves as secretary for each employee in that department. 

Attributes can provide such links in the same way as 
relationships. If an employee works at a certain location, this 
implies that his department has someone working at that 
location. If we have a mechanism for establishing that two 
attributes are “in the same domain”, then we can infer a 
relationship between two entities having the same value of such 
attributes (cf. section 8.4.2). E.g., we could infer that a supplier 
and a warehouse are in the same city. 

Both the domain and the role of the attributes must be 
considered, to avoid misunderstanding the significance of the 
implied relationship. If an employee was hired on the date his 
manager graduated college, we mustn’t infer that they were hired 
on the same date, or born on the same date. 
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Other kinds of erroneous inferences might also be carelessly 
drawn. If a part is available from a certain supplier, and a 
warehouse is serviced by that supplier, we can’t infer that the 
part is stocked in that warehouse. (And even if it was, it might be 
a different supplier who supplied that part to that warehouse.) 
This is the connection trap [Codd 70], whereby an erroneous 
inference may be drawn from the “join” of two relationships on a 
common domain. This is a user error, not the fault of the data 
model, in ascribing the wrong meaning to the results. The user 
error arises out of mistakenly taking such relational operators as 
“project” and “join” to be inverse operations, expecting that 
performing the two in succession returns the original 
information. A projection can decompose one relation into two; 
joining these two does not necessarily re-create the original 
relation. 

One of the strengths of the relational model is that all such 
“implicitly defined” relationships are readily available, simply 
by joining relations on a common domain. It does require, 
however, that users correctly interpret the meaning of the joined 
relations. 

There are some risks involved in the use of symbol matching 
to detect implicit relationships. Implicit (computed) relationships 
based on symbol matching are subject to the failures mentioned 
in section 3.9.2: synonyms prevent detection of relationships, 
ambiguities induce spurious connections. 

Furthermore, if qualified names (multi-field keys) are used, 
there is potentially another kind of spurious connection. A match 
may be made with any other relation containing those two 
columns, even when those two columns are not serving as the 
qualified names of single entities. This was illustrated in section 
8.8.3. 
 
10.5.3 Orderings 
 

An ordering has the appearance of a relationship (X is less 
than Y), but it would be cumbersome to model it as a binary 
relationship (pairing each item with every larger item). 



187 

Some orderings are obtained by sorting on data maintained 
about the entity (e.g., order employees alphabetically by name, 
or by employee number, or by salary, etc.). Other orderings, 
however, are not based on such data; they simply reflect a 
sequence based on some criterion that is not provided to the 
system in any “sorting” procedure. Examples of these include the 
lines in a text file, the statements in a program, the order of 
succession to an office (e.g., the presidency), a chronological 
sequence of measurements, the starting positions in a race, 
batting orders, and so on. 

There are two ways to model such sequences, and it is not 
clear which is appropriate for a conceptual model. The first way 
is to specify a field or attribute whose value represents the 
ordinal position of an entity in this sequence or ranking. (Since 
the ranking may intermix several entity types, this attribute 
would have to be defined as common to all of them.) The 
management of this attribute can be presented to external users 
in several ways. The least desirable is to make the user fully 
responsible for its maintenance: on inserting, deleting, or moving 
an entity relative to the ranking, the user must update the 
sequence fields in all the subsequent entities in the ordered set. 
Alternatively, the system could understand the semantics of a 
sequence field: when the user places or moves one entity behind 
another, the system recomputes the sequence fields as needed. 
This facility is commonly provided by text processing systems. 

The alternative is to represent order as an explicit 
relationship, e.g., “precedes”. In the viewer’s mind, the entities 
could be perceived as being physically adjacent, or connected by 
chains of pointers. However, the user could still be presented 
with facilities to either “insert X after Y” or “insert X as fifth” 
(perhaps implemented by a procedure that counts its way down a 
chain). An external representation could still contain a sequence 
field, perhaps generated by a counting process when the record is 
materialized. 

The two approaches are functionally equivalent. Either can 
be made “primitive” in the conceptual model, with the other 
being derived or computed. Either can be presented to external 
users in the two forms “insert X after Y” and “insert X as fifth”. 
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Either can be implemented internally by physical adjacency, 
sequence fields, pointer chains, indexes, or other techniques. 
Each implementation has its own performance tradeoffs, and 
perhaps different locking implications. If two users are each 
working with half of an ordered set, can one user insert or delete 
an entity without having to wait for sequence field updates to be 
propagated into the other half? Sometimes that interference is 
undesirable, in cases where only the relative order and not the 
actual sequence number is significant. 

 
10.6 Existence Lists 

 
This topic really concerns the modeling of entities, 

particularly with respect to establishing their existence. But we 
mention it here to contrast it with the most common practice: the 
existence of entities is typically not modeled independently, but 
is implied by their participation in various relationships. 

For example, we often speak of employee records as though 
there was just one set of them, with exactly one record for each 
employee. But there is nothing in any of the record based models 
to preclude defining several sets of employee records, each 
containing different kinds of information. One might contain 
payroll information, another might have health information, and 
so on. Irreducible relations move us in that direction. 

In a sense, we also have other kinds of records about 
employees, namely the intersection records that a normalized 
system forces us to maintain for many-to-many relationships 
(e.g., employment history). True, this is not a simple employee 
list, since there may generally be several such records per 
employee (e.g., one for each department in which he has 
worked). A given employee is likely to be involved in several 
such record types (one for each type of multi-valued fact about 
him, e.g., departments, children, skills, etc.), as well as several 
instances within each type. 

Ironically, it is conceivable that those are the only kinds of 
records we have about him. If it happened that every single fact 
about an employee could be multi-valued (e.g., several names, 
several departments, several salaries, etc.), then there would be 
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no such thing as “an” employee record. All we could show for 
the employee is a collection of various types of intersection 
records. 

Of all the kinds of records in which employees might occur, 
which type is to be considered the definitive list of employees? 
What is going to serve as the defining list for an existence test 
(section 2.4)? 

Conceptually, at least, it would help to always have a notion 
of an existence list, whose purpose is to exhibit the currently 
known set of members of that type. Put another way, one ought 
to be able to assert the existence of something separately from 
providing assorted facts about it. 

The relational model appears (depending on which papers 
you read) to have several partial approximations to existence 
lists. Each column of a relation may have, in addition to a 
column name, the name of some associated domain ⎯ but that 
domain is not a manipulatable structure in which one can add or 
delete members as with other relations. It is possible to specify 
constraints of the form “keys occurring in this relation must also 
occur in that relation” (e.g., [Smith 77a]) ⎯ but there is no 
discipline saying that you must nominate the same “that” relation 
in two constraints involving employees (hence there may still be 
no single relation defining the domain of employees). And, 
finally, defenders of the relational model point out that one could 
introduce unary relations (relations with only one column, e.g., 
employee number) to serve as domain sets, and consistently refer 
to such relations in constraints ⎯ one could, but the relational 
model doesn’t require it, and I don’t think anyone has ever done 
it. 

[Furtado] notes: “An immediate consequence of adopting a 
graph-theoretical model is that, being assimilated to nodes, the 
domain elements exist by themselves. This is at variance with the 
original relational model.... where the existence of a domain 
element is conditional to its presence in some relation tuple”. 

A final concern: domains are too often defined in terms of 
symbols (character strings) rather than entities. [McLeod], for 
example, considers a relational database to consist of a collection 
of normalized relations and a collection of domains, but defines 
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a domain to be “a set of atomic data values (objects). In 
particular, a domain is a subset of one of the two ‘natural’ 
domains: real number and character string.” This is not at all an 
existence list. It is a syntax test for the acceptability of symbols; 
it is in no way a list of entities that permits individuals to be 
added or removed. 
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11 Elementary Concepts: Another Model? 
 

 
hus far we have been largely critical, and negative. We 
have identified problems without really suggesting 
solutions. 

Can we identify an appropriate set of elementary 
concepts that will on the one hand serve as a general base for 
modeling information (in our limited use of that term), and on 
the other hand be an appropriate base for computerized 
implementations? Let us try. 

What follows here is a sketch of work in progress, some 
basic ideas about the “right” set of constructs for such a model. 
Much work remains to be done ⎯ including an attempt to define 
more precisely the criteria by which the model is “right” in the 
first place. 

I will begin (shortly) with some partially worked out ideas 
for a specific model, so that we know at the outset what 
conclusions I wish to justify. Then some motivations and 
comments will follow. 

The model is not intended for modeling reality as such. It is 
rather an idealized system for processing information, which 
hopefully has some very useful characteristics for modeling 
reality. It is highly abstract, and can be implemented (realized) in 
real systems in many ways ⎯ just as the abstract concept of 
“ten” can be represented many ways in machines. Also, in its 
pure form, the model has certain properties that prevent it from 
ever being implemented perfectly ⎯ just as the infinite set of 
real numbers can never all be represented in a finite computer. 
For example, some things in the model are infinite, and some 
things exist without ever being created. Such things can only be 
approximated in real systems. 

 

T 
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11.1 System Organization 
 

As introduced in chapter 0, the model has to be understood 
as functioning in the context of a system organization, consisting 
of a repository, an interface, and a processor. Mostly, we will talk 
about the (apparent) contents of the repository. Very little will be 
said about the interface. 

The processor is a large piece of unfinished business. If done 
properly, it can be the basis for canonical definitions of computer 
operations on data. It is the dynamic component of information 
definition, doing for data manipulation what the repository 
model does for static data structures. 

It seems obvious that natural operations of the processor 
include creation, destruction, connection, and disconnection of 
objects. Executable objects (to be introduced below) will also 
have to be executed by the processor. Some aspects of the 
processor can be tailored ⎯ their precise definition is not 
intrinsic to the model. (But it will govern the kinds of things that 
may occur in the executables.) E.g.: 

 
• Kinds and complexities of queries and expressions. 
• Conventions followed for name resolution. 
 

11.2 Primary Model Elements 
 
11.2.1 Objects 
 

The descriptions of most models begin by making 
distinctions, between such constructs as entities, relationships, 
attributes, names, types, collections, etc. These are implicitly 
taken to be mutually exclusive concepts, more or less. 

We start instead from a unifying premise: all of these 
constructs are in fact entities. Each of these phenomena, and 
each of their instances, is a distinct integral concept, capable of 
being represented as a unit item in a model. 
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Everything in the repository is an “object”. The term is used 
interchangeably with “surrogate”, “representative”, and 
sometimes “thing”. 

There are four kinds of objects: simple ones, and the three 
kinds described in subsequent sections ⎯ symbols, relationships, 
and executables. Simple objects don’t do anything else except 
represent entities; they occur very frequently. 

There are very few general properties I can think of which 
apply to all objects. The main ones that come to mind now are 
these: 

 
1. Objects can be related to each other. 
2. Their existence can be detected by the processor. 
 
The four kinds of objects are primitive to the processor in the 

sense that the processor can determine the kind of object directly, 
without chasing relationships to find out the “type”. 

The four kinds are mutually exclusive, e.g., a relationship is 
not a symbol. But let me re-emphasize, because it’s important: 
these four kinds are all objects. Any kind of object can be related 
to any other kind of object. 

 
11.2.2 Symbols 
 

Some objects in the repository are “symbols”, for which I 
sometimes also use the term “string” (in the sense of a character 
string). Symbols are the only objects that can pass across the 
interface. The communication that takes place between you and 
the processor across the interface consists entirely of a stream of 
symbols. Some of those symbols come to rest in the repository; 
others are interpreted or generated by the processor. The symbols 
in the repository are related to other objects, serving as names, 
descriptions, or representations for those objects (more precisely, 
for the entities represented by those objects). 

Remember, this is an abstract model. A real implementation 
doesn’t have to have this complex of two objects and a naming 
relationship for each and every entity; it should just behave as 
though it did. 
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A symbol object also needs to have a name itself, which can 
be passed through the interface. One often needs to reference it, 
as in the request to relate a certain entity to a certain name. 
Across the interface, a quotation mark convention can indicate 
that a symbol is naming itself. “Relate Harry to X” connects a 
thing named Harry to a thing named X. “Relate Harry to ‘X’“ 
connects a thing named Harry to the symbol X. 

 
11.2.3 Relationships 
 

Two aspects of relationships need to be modeled: the relation 
type, and the occurrences of the relationship. 

I don’t have the type object well designed yet, but I hope it 
can be fabricated from ordinary objects. However, it might 
require the introduction of some additional primitive objects. The 
following appear to be the necessary characteristics of a relation 
type object: 

 
• It is connected by naming relationships to the name(s) of 

the relationship. 
• It is connected (by relationships?) to affiliated role 

objects, which represent the roles defined within the 
relationship. (Such “roles” are sometimes referred to as 
“selectors”.) An n-ary relationship has n affiliated role 
objects. 

• The degree of the relationship is recorded in an ordinary 
way, e.g., a “has degree” relationship between the 
relationship type object and an ordinary quantity object. 

• The role objects and/or the relationship type object are 
connected (by relationships?) to executable objects, 
which represent the domain constraints and other 
validation rules defined for the relationship. 
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A relationship type object may be drawn as: 
 

RELATIONSHIP

Owns

ROLE

Owner

NUMBER

2

ROLE

Property

has role

has degree

has role

 
 

This diagram uses conventions that will be defined in section 
11.3.3: the type and name relationships are abbreviated by 
writing types and names inside the boxes. Also, constraints have 
been omitted from this diagram. 

The unfinished state of these objects doesn’t hurt the model. 
Their purpose and function is well understood. If they all have to 
be made primitive, nothing is really lost. It’s just that there’s a 
challenge in minimizing the number of primitives, and in 
defining the model elegantly. 

Relationship occurrences, on the other hand, are well defined 
in this model. For brevity, I will sometimes use the term link for 
a relationship occurrence. 

These link objects glue together all the objects in the 
repository, providing the basis of virtually all the information in 
the repository. The structure of a link is somewhat elaborate, 
serving the following functions: 

 
• It has a connection to the relationship type of which this 

link is an occurrence. 
• It has connections to the n objects being related, where n 

is the degree of the relationship. 
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• It connects each of these objects to a role object, to 
establish in which role each related object is occurring. 
(One could think of the roles and objects being ordered, 
with the correspondence being by position. But we don’t 
make position numbers an explicit part of the model⎯so 
long as some correspondence mechanism exists.) 

 
These connections are provided primitively by the link 

object. The connections are not themselves modeled as 
relationships, thus preventing an epidemic of infinite recursion. 
 

A link object may be drawn as: 
 

RELATIONSHIP

Owns
(a link object)

ROLE

Owner

PERSON

Harry

ROLE

Property

DOG

Rover
 

 
A link requires the continued existence of the objects it 

connects. It should be specifiable (in the creation of a relation 
type) what should happen on an attempt to delete an object 
connected to one of its links. Either the deletion is blocked, or 
the link goes too. 

 
11.2.4 Executable Objects 
 

This is another piece of largely unfinished business. 
These are objects in the repository that can direct operations 

of the processor. They are introduced primarily to represent 
constraints to be enforced by the processor. They can also 
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represent implications or derivations ⎯ the generation of 
auxiliary objects or relationships that are consequences of other 
information. And they probably have other uses. Maybe they can 
be the embodiment of certain kinds of existence tests. And 
equality tests. 

I don’t really know how they will occur in the repository. To 
be pure, the object should be distinct from the “symbol” (long 
character string) which is its description in some language (its 
source text). In theory, at least, a variety of text strings could 
specify the same action. 

There also has to be some mechanism for its connection into 
the web of information. It sometimes makes sense to link it to 
relationship type objects, since an executable is often triggered 
by the assertion of a relationship of a specified type. But 
sometimes it is triggered by a specified relationship to a 
particular object (a constraint on which things may be related to 
X by R). And there certainly has to be some mechanism that 
causes the processor to encounter the executable object at the 
right time, recognize it as such, and execute it. 

On the other hand, executables might be used for triggered 
actions not related to specific relationship assertions, such as 
scheduled data changes based on time. 

Also, something has to be designed concerning actions to 
take when constraints are violated. Maybe the general form of an 
executable is: “when (event) if (condition) then (action) else 
(action)”... or perhaps it should include a case statement. 

And another part of the unknown: they will undoubtedly 
involve references ⎯ how linked? ⎯ to other objects involved 
in the constraints, e.g., type objects, or limit values. 

 
11.3 Secondary Elements: A Vernacular 

 
Those primary objects will be sufficient, I contend, for our 

modeling purposes (after we finish defining the objects, of 
course). But we can’t escape the fact that such things as type, 
attribute, and set are also useful and common notions. I need 
them myself ⎯ I couldn’t avoid using them throughout this 
book. And at the same time they remain ambiguous and 
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troublesome, being difficult to define precisely, or to distinguish 
from each other and from the primary concepts. 

We cope with this by allowing two levels of thought, the 
rigorous and the vernacular. At the rigorous level we use only the 
primary concepts of the model. This is adequate for all purposes 
except comprehensibility: the sentences get awfully convoluted, 
and the diagrams are frightening. 

In the vernacular mode, we use secondary concepts that can 
be defined in terms of the primaries (they may not have been so 
defined, but they can be). Thus we may informally speak of 
“objects of type X”, understanding that we mean objects related 
by a “has type” relation to an object named X, where X in turn is 
an object whose type is “type” (i.e., X is a type). And even that’s 
not the full refinement: “an object named X” is vernacular for 
“object related by a ‘has name’ relation to symbol ‘X’“ .... and 
furthermore, the phrase “related by a ‘has name’ relation” refines 
to mean an instance of a relation that is itself related by the ‘has 
name’ relation to the symbol ‘has name’.... and so on. The 
recursion can be stopped fairly soon ⎯ but it takes a frightening 
diagram to demonstrate it. 

To illustrate, consider the phrase “red is a color”, for which 
we have used the notation 

 
We might say at a vernacular level that “red has-type color”: 

COLOR

red

red

has type

COLOR
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But this assumes concepts of types and names that aren’t in 
the primary model. We might go through several stages of 
refinement to reduce this to purely primary concepts, starting 
with “an object whose name is ‘red’ and whose type is COLOR”: 
 

has name red

has type

COLOR

 
 

A box like red  denotes a symbol. 
 
This in turn refines to “an object whose name is ‘red’ and 

whose type is an object whose name is ‘COLOR’ and whose type 
is TYPE”: 
 

has name red

has type

has name COLOR

has type

TYPE
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And then to “an object whose name is ‘red’ and whose type 
is an object whose name is ‘COLOR’ and whose type is an 
object named ‘TYPE’”: 
 

has name red

has type

has name COLOR

has type

has name TYPE

 
 

We stop here to escape infinite regress, since the type of 
TYPE is TYPE: 
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has name red

has type

has name COLOR

has type

has name TYPE

has type

 
 

Several purposes are served by having both the rigorous and 
the vernacular levels. A broad range of important concepts is 
accounted for, without requiring their inclusion in the base 
model. The base model can be kept elegant, with the primitive 
concepts being few and well defined. 

The base model provides a medium for very precise 
definition of the other concepts. Thus, when many of the 
dilemmas described in this book arise, they can often be resolved 
by referring to (or agreeing on) precise definitions in terms of 
primitives. 

At the same time, by keeping them out of the base model, we 
don’t need permanent or universal definitions, thus avoiding 
many tedious debates. We can agree on local definitions in the 
context of a particular conversation. And, in fact, different 
implementations of the model might employ different definitions 
of the secondary constructs. 

Thus, we could view our product here as a “model 
generator”, capable of producing various modeling systems 
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distinguished by their differing definitions of secondary 
constructs. 

Also, we can avoid many of the difficulties concerning the 
distinction between concepts. They can appear distinct in the 
vernacular, while having similar underlying definitions. Thus, for 
example, type and attribute can appear to be distinct in the 
vernacular, but both be defined in terms of relationships. 
Consider the notion of being an employee, with the concept 
being represented by a single object. This object could be both a 
type and a status. An entity could have one relationship to this 
object, which could be interpreted by some as an attribute and by 
others as a type. (It may require a complex synonym for the 
relationship, with one person thinking it was named “has type” 
while the other thought it was named “has status”. On the other 
hand, we avoid that if the relation is simply named “has”.) 

Thus two apparently distinct phenomena are given an 
interpretation as two views of the same phenomenon. And a 
mechanism is provided for treating them interchangeably: what 
is treated in one application as a type can be treated by another 
as an attribute. 

I will not formally define any secondary elements. 
 
11.3.1 Type 
 

Here’s a way to introduce types, and to tailor them to suit 
your taste. 

Let there be a distinguished object in the repository that your 
processor recognizes as representing the concept of “type”. (We 
could let this object be related to the symbol “TYPE” by a 
naming relationship.) 

Let there be a relationship named “has-type”, one instance of 
which links TYPE with itself (i.e., TYPE is itself a TYPE; it is 
an object whose type is TYPE). Relate has-type to an executable, 
which will only permit X has-type Y if Y has-type TYPE (e.g., X 
can only have type EMPLOYEE if EMPLOYEE is a type). 

The type Y can be introduced by asserting Y has-type TYPE. 
Things can now be of type Y by having a has-type relationship to 
Y. 
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The use of executables in this context needs to be worked 
out. For the constraints on objects of type Y, the executable 
would have to be triggered whenever a has-type relationship to Y 
is asserted. The executable would include constraints on naming 
conventions, and on allowable overlaps with other types. 

If desired, a global constraint to the effect that no types may 
overlap could be attached to the TYPE object itself. (“For any X 
and Y and Z, X has-type Y and X has-type Z may only occur 
together if Y equals Z”.) But I don’t know how to effectively 
introduce the triggering of another global constraint that you 
might want: every object must have at least one type (“for each 
X there must be a Y such that X has-type Y”). Maybe it has to be 
triggered by the create operation of the processor. 

 
11.3.2 Naming 
 

Naming is really a very complex topic, with a large variety 
of structures and algorithms actually employed in real situations. 
The topic could include anything ranging from simple labels to 
complex (and perhaps interactive) stratagems for isolating a 
single object (name qualification, catalog cascades, intersecting 
or converging descriptions, and so on). 

Our approach is to not prescribe any one simplified 
technique, but rather to provide an environment in which any 
desired structure and algorithm can be expressed. This is 
generally achieved by permitting any configuration of 
relationships among things and symbols, which may then be 
exploited by manipulative functions in any desired manner. 

The simplest notion for naming is that there are two objects 
in the system, a nameless element that is the actual 
representative (surrogate) for something in the real world, and 
another object that is a symbol. A naming relationship connects 
these two, as in [Hall 76]. The surrogate may be so connected to 
several symbols, serving as synonyms or aliases, or even as 
descriptions. An implementation need not supply two such 
distinguishable objects; this device merely serves to describe the 
semantics of the model. 
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Such a naming convention, or any more complex ones 
desired, can be incorporated into the processor for a given 
system, making use of ordinary model objects (including 
executables). 

The model does not require a thing to have any unique name. 
In fact, it does not require a thing to have any name at all. 
(“Create object owned by Harry, weighing 12 pounds.” “What 
are the weights of things owned by Harry?” “12 pounds.” “What 
does Harry own?” “One nameless thing weighing 12 pounds.”) 
And there are babies. Many of them don’t have names for a few 
hours, or even days, after birth. But data still gets recorded about 
them, and they certainly do get talked about. 

The requirement to have a name, or a unique name, can be 
imposed in various implementations, or when used in 
conjunction with particular data processing systems. But they are 
not intrinsic requirements of the model. 

 
11.3.3 Vernacular Pictures 
 

It is fairly natural to use abbreviated diagrams corresponding 
to these vernacular concepts. We have been using some already. 

A picture of this form has a fairly natural 
interpretation. It depicts an object linked by a naming 
relationship to the symbol “red”, and linked by a 

typing relationship to a type named “COLOR”. That is, we have 
the type in the top of the box and the name in the bottom. Such a 
diagram is appropriate if: 

 
• There is exactly one naming relationship that is 

understood to apply, and everyone knows which one (or 
nobody cares). 

• The object has exactly one name. 
• Ditto for types. 

 
 

Sometimes even the type can be omitted, if we are willing to 
assume that everyone understands which one is implied. 

C O L O R

r e d

red
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Similar conventions hold for relationships. The link we 
showed in section 11.2.3 is often abbreviated as: 
 

Harry owns Rover
 

Or even as 
owns

Harry Rover
 

Again, such conventions are only applicable when the full 
structure of the link is clearly inferable, e.g., the roles being 
played by each of the participants in the relationship. 

 
11.3.4 Sets 
 

Derived relationships (section 11.8.3) can be used to 
introduce a vernacular notion of sets. The derived relationships 
would be used for: 

 
• General definitions for all sets re propagations of subset 

and membership relationships. 
• For maintenance of membership relationship to a 

particular set, defined in terms of things having certain 
relationship to certain object. 

 
11.4 The Name of the Model 

 
Perhaps this model ought to have a name, for handy 

reference. Any model worth its salt ought to have a catchy 
acronym. 

Sometimes I call it STAR, standing for “Strings (or 
Symbols), Things, And Relationships”. 

But it could also be ROSE: “Relationships, Objects, 
Symbols, and Executables”. 

Maybe I should have a contest. Winner gets to finish 
defining the model. (Losers get to use it?) 

 
11.5 About Entities 
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11.5.1 Existence 
 

We have to be careful about the sense in which we mean that 
an object (representative) “exists” in the repository. The 
existence tests have to be specified (using a vernacular based on 
type), and this conditions what we believe about existence. 

The kind of existence test I understand best, and which I 
tend to assume most of the time, is a list-test with objects 
distinguished from symbols. That is, the “list” is a set of objects, 
each of which may have any number of symbols linked to it by 
any complex pattern of naming relationships. Existence is 
established when one of these symbol paths leads to an object in 
this set (and equality is established when two of these symbol 
paths leads to the same object). 

Modeling something abstractly as having representatives 
does not necessarily imply that physical storage space will be 
occupied by such representatives. Nor does it imply that such 
representatives are explicitly created or destroyed. 

The interaction of overlapping types must be considered. A 
given entity might be subject to multiple existence or equality 
tests. Are they consistent? 

 
11.5.2 The Butler Did It 
 

I haven’t solved the problem of collapsing two entities into 
one (section 1.4.), and I don’t know how. A brute force approach 
would be to discard one of the surrogates, and replace all 
references (linkages) to it by references to the other one. This 
could lead to enormous validation problems.  

A mischievous idea: we could introduce a relationship 
meaning “is the same entity as”. At the end of our mystery, we 
would simply assert such a relationship between the butler and 
the murderer. What in the world would that mean to our model? 

Looking at the model “physically”, we can plainly see that 
there are two entities connected by a relationship. But if we take 
cognizance of the semantics of the relationship, we must only 
perceive one entity (and no relationships?). Should a counting 
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function have to examine the semantics of such relationships? 
(“How many entities are in the room?” “How many relationships 
exist between the murderer and the butler?”) 

 
11.6 About Symbols 

 
The initial concept is that of finite sequences of characters 

from some alphabet (including numbers and special characters). 
We don’t really care which alphabet, so long as we can construct 
all the names, representations, descriptions, etc., that we need 
from it. Even with this looseness, we get into some funny 
considerations. Does the character size, case, font, color, etc. 
make a difference? How shall we decide when two symbols are 
the same or not? What about strings that run from right to left, or 
vertically? What about hieroglyphics, pictographs, ideograms, 
graphic images? 

I give up. The essential idea is this. We postulate some 
interface in front of the model across which all communications 
with the model take place (typically involving some form of 
computer related input/output devices). We postulate the 
existence of some set of symbols that can pass across this 
interface, without really defining what we mean, except to say 
that: 

 
• All communication across the interface is in terms of 

such symbols. 
• There is some definite algorithm for determining when 

two symbols are the same or different (we don’t care 
what the algorithm is). 

 
11.7 The Symbol Stream and the Processor 

 
It’s becoming increasingly evident to me that we really need 

to think of the symbol stream that passes across the interface as 
being addressed to the processor. Symbols get into the repository 
indirectly, under control of the processor. 

One could take a simple view to the effect that symbols go 
directly to the repository, where they serve to represent the thing 
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named by the symbol. One could say to the computer “Create 
John”, causing the symbol “John” to enter the repository, to 
serve as the representative of the person named John. In 
subsequent communications, the symbol “John” will occur to 
indicate reference to that person. This won’t do, in our model, 
because of our insistence on separating surrogates for entities 
from the symbols that name the entities. 

But we can still imagine the computer having a 
straightforward interpretation of “Create John”: it will first create 
the symbol “John” if it doesn’t already exist, then create a new 
surrogate, and then link the new surrogate to the symbol “John” 
under a “name” relationship. This is still not too far removed 
from thinking that the symbol “John” goes directly into the 
repository, and that references to that person will contain the 
symbol “John” (or some other defined synonym). 

But now consider this series of instructions: “Create a 
surrogate for something. It has a height of six feet. It is a person. 
Etc.” In the second and third instructions, what is the symbol that 
refers to the subject of the information? It is the pronoun “it”. To 
what extent is that a symbol, of the kind that one might find in 
the repository, connected to something by a naming relationship? 
Or is that pronoun really better described as an instruction to the 
processor, to be interpreted as another reference to the most 
recently referenced entity? (Which implies that the processor is 
maintaining a history of the dialog, to recall which was most 
recently referenced.) 

More generally, one might refer to an entity by using a 
complex descriptive phrase causing the traversal of many entities 
and relationships, or the application of testing procedures, in 
order to arrive at the entity in question. Something like this 
occurs in many query systems, and is implicit in most name 
qualification conventions. 

Thus, the concept of a symbol in a communication 
“representing” something becomes quite nebulous. It could be a 
simple symbol directly linked to the surrogate in question, or it 
could be an instruction guiding the processor to the surrogate. 
This spectrum of processing possibilities underlies our difficulty 
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in defining the difference between naming and description 
(chapter 3). 

In any case, it is often held that there has to be some sort of 
explicit symbol in the communication that is associatable with 
the entity in question, even if the symbol is only a placeholder, 
like the pronouns “it” or “something”. But let me endow the 
processor with intelligence enough to play a familiar game 
(which assuredly can be programmed). I will say to this 
processor “Let’s play twenty questions.” That instruction is 
sufficient to cause the processor to create a new surrogate with 
absolutely no information attached, to which the processor will 
later expect to attach information. The information can be 
attached because the processor will understand the pronoun “it” 
to refer to that surrogate. Eventually the processor will try to 
match the surrogate and its attached information with some 
existing surrogate. But look at the initial instruction: “Let’s play 
twenty questions.” It caused a surrogate to be created. Where in 
that sentence is any sort of symbol that could be interpreted as a 
symbol (placeholder or otherwise) for that surrogate? 

 
11.8 About Relationships 

 
11.8.1 Entities 
 

Once more, for emphasis: they are entities, and a relationship 
can link another relationship to something else. 

Too many of the graphical models make entities and 
relationships mutually exclusive by forcing the entities to be 
points (nodes) and the relationships to be lines (edges). Then 
you’re not permitted to draw a line between two lines, or from a 
line to a point. What we have done, if you must picture it, is to 
give each line a bulge in its middle, so that it can itself function 
as a node. 

 
11.8.2 Existence 
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Like entities, relationships can also have several modes of 
existence. Thus we have to be careful also about the sense in 
which we imagine links to exist. I really can’t imagine an 
implementation in which every abstractly modeled link actually 
corresponds to, say, a pointer in storage. So, it may be necessary 
to introduce specifications of the existence modes of 
relationships. 

Some of them may be functional (computed, procedural) ⎯ 
which could lead to the use of executables to model 
relationships. Orderings, trig functions, etc. seem to fit this mold. 
For such relationships, certain semantic characteristics ought to 
be made explicit, such as: 

 
• Assertability, modifiability, deletability of occurrences 

(probably can’t be done). 
• Ability of occurrences to participate in other 

relationships (probably limited to other computed ones). 
• Bidirectionality (inverse function might not be 

provided). 
• Finiteness (listability, satisfiability of queries: list all 

occurrences of “less than”). 
 
Also, there is undoubtedly some interaction between the 

existence modes of a relationship and the objects it relates. It’s 
hard to imagine an explicit link to an object whose existence is 
procedurally verified. 

 
11.8.3 Derived (Implied) Relationships 
 

The model needs a general mechanism for the specification 
and execution of derived relationships (cf. section 4.6). They are 
likely to take the form of executable objects, linked to: 

 
• The relationship (type) whose derivation is being 

defined. 
• The relationships and objects (types) from which it is 

derived. 
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11.8.4 Specification 
 

The following things ought to be specifiable when a 
relationship type is created in the model, and a configuration is 
needed for representing these using model objects: 

 
• Relationship name(s). 
• Degree. 
• Role names. 
• Domain constraints. 
• Other constraints. 
• Existence mode, executable generators, etc. 
• Cascading deletion rules. 
 

11.8.5 Symmetric Relationships 
 

Some variations might be appropriate to support symmetric 
relationships. The roles need not all be distinct, and hence a 
relationship type of degree n might have fewer than n affiliated 
role objects. The significance of n is that each link object must 
connect n objects; several of these may be connected to the same 
role object. 

 
11.9 About Attributes 

 
As promised in chapter 5, we don’t distinguish these from 

relationships. If you want to introduce a definition, I suggest that 
the most promising route is as a special case of relationships, 
framed in terms of the existence tests for the types of entities 
involved. 

 
11.10 Descriptions:  Data About Data 

 
Definitions, constraints, etc. are modeled right in the same 

repository, using model constructs. 
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Such definitions are often considered to be expressed in 
terms of “types”, e.g., X is the existence test for objects of type 
Y. We assume instead that such definitions are couched in a more 
general form, in terms of objects and relationships. E.g., X is the 
existence test for objects having relationship T to object Y. 

If Y is interpreted as a type, then we can see that types and 
instances are necessarily modeled as being in the same 
repository, since they are connected by relationships (T, in this 
case). 

 
11.11 Implementations 

 
It is very important to keep in mind that the separation 

between things and symbols is a conceptual property of the 
model, without any direct implications for implementations. A 
naming relationship does not have to exist as a collection of 
distinct physical objects, each of which links a distinct thing 
object with another distinct symbol object. It can be 
implemented in any number of efficient and compact ways. The 
separation is only a device for explaining the semantic properties 
of the model. 

Similarly, a type relationship does not have to be 
implemented with an enormous number of distinct relationship 
objects. Most implementations are likely to encode the type (or 
types) of a thing directly into its representative. 

The same applies to other aspects of the model as well. It is 
not expected that a distinct physical object will exist for each and 
every entity. That would be very impractical for, e.g., numeric 
quantities. However, the model does provide the capability to 
express the corresponding semantic implications, e.g., whether 
or not entities of a given type need to be explicitly created before 
they are referenced. 

To be perfect, use of the model should involve absolutely no 
assumptions about the existence of any kinds of entities, 
symbols, or relationships. They should all be asserted explicitly. 
But there is a large class of things we take for granted, and which 
are implicitly assumed to be provided in an expected realization 
in a computer. We take advantage of these being “built into” the 
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semantics of a computer; in any real use of the model, nobody 
wants to be bothered specifying these explicitly. 

The things we get “for free” include: 
 
• The existence of a set of symbols, and an alphabet from 

which they are constructed. 
• The existence of the concept of numbers. 
• Conventions establishing which symbols are naming 

which numbers under various conditions. 
• The existence of ordering relationships, including 

collating sequences for non-numeric symbols. 
• The existence of certain equality tests. 
• The existence of certain synonym relationships: data 

type conversions, floating point normalizations, etc. 
• The existence of certain acceptance tests: data types. 
 
While we don’t wish to be bothered specifying these, we do 

not always get what we had assumed. 
If there is a limitation on the set of integers that can occur in 

the repository (limited by the capacity of the underlying 
computer), shouldn’t that be expressed in the model? 

It is possible to implement some of the primitive model 
objects simply as integers, i.e., internally generated globally 
unique identifiers. It works for some of the simple objects, 
depending on the nature of their existence tests. It doesn’t work 
for links, since a simple integer doesn’t capture the structure 
needed for connecting to the other objects involved. And it is 
likely to be clumsy for symbols, which in most cases should 
contain the actual string of characters comprising the symbol. 

Even where internal integers are usable, they aren’t 
necessary. Just about any large enough collection of discrete and 
linkable things will do. And even when such objects do have 
string-like internal representations (such as machine addresses or 
database keys), if they are not exposed across the interface they 
had might as well be arbitrary objects. 

Executable objects are not necessarily implemented by 
discrete executable procedures. Structures in the underlying 
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system or machine may implicitly enforce certain constraints, in 
the way that hierarchical data structures enforce one-to-many 
relationships. 

 
11.12 Comparison With Other Models 

 
This is not really a new model, but a “better” packaging of 

existing ideas. Depending on which details you suppress, there 
are many models that are “just like” this one. The works to 
which I think the resemblance is especially strong include 
[Bracchi], [Hall 76], [Senko 76], [Falkenberg]. 

The following are some brief characterizations of the model. 
Which ones interest you depends on which other models you 
favor, or consider important to be compared with. 

 
• The model is much like an irreducible n-ary model. 
• The model is much like a binary relational model, in the 

sense of [Bracchi]. 
• It differs from any form of relational model in that a 

relationship occurrence is an aggregation of surrogates, 
not symbols. 

• The model distinguishes between the objects 
(surrogates) that represent entities and the symbols that 
name entities. 

• It supports many-to-many relationships directly. 
• Its primary constructs are objects, relationships, 

symbols, and executable objects. 
• It does not take type, attribute, set, or naming rules to be 

primary constructs. 
• To the extent that it does have a type phenomenon, it 

allows types to overlap (an object can be of multiple 
types). 

• The semantics to be specified for surrogates includes a 
description of the existence tests and the equality tests. 

• Descriptions are not segregated from data. They reside in 
the same repository, and are interconnected. 
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• The model is described in the context of a system 
organization, consisting of a repository, an interface, and 
a processor. 
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12 Philosophy 
 
 

12.1 Reality and Tools 
 
have tried to describe information as it “really is” (at least, as 
it appears to me), and have kept tripping over fuzzy and 
overlapping concepts. This is precisely why system 

designers and engineers and mechanics often lose patience with 
academic approaches. They recognize, often implicitly, that the 
complexity and amorphousness of reality is unmanageable. 
There is an important difference between truth and utility. We 
want things that are useful ⎯ at least in this business; otherwise 
we’d be philosophers and artists. 

Perhaps it is inevitable that tools and theories never quite 
match. There are some opposite qualities inherent in them. 

Theories tend to distinguish phenomena. A theory tends to be 
analytical, carefully identifying all the distinct elements and 
functions involved. Unifying explanations are abstracted, 
relationships and interactions are described, but the distinctness 
of the elements tends to be preserved. 

Good tools, on the other hand, intermingle various 
phenomena. They get a job done (even better, they can do a 
variety of jobs). Their operation tends to intermix fragments of 
various theoretical phenomena; they embody a multitude of 
elementary functions simultaneously. That’s what it usually takes 
to get a real job done. The end result is useful, and necessary, 
and profitable. 

Theories tend toward completeness. A theory is defective if 
it does not account for all aspects of a phenomenon or function. 

Tools tend to be incomplete in this respect. They incorporate 
those elements of a function that are useful and profitable; why 
bother with the rest? The justification for a tool is economic: the 
cost of its production and maintenance vs. the value of its 
problem solving functions. This has nothing to do with 
completeness. (In 1975, a government official asked to have his 
job abolished, because nobody actually needed the services of 

I 
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his office. His job did have a well defined function, in theory. 
“Completeness” would have dictated that his job be retained.) 

Useful tools have well defined parts, and predictable 
behavior. They lend themselves to solving problems we consider 
important, by any means we can contrive. We often solve a 
problem using a tool that wasn’t designed for it. Tools are 
available to be used, don’t cost too much, don’t work too slowly, 
don’t break too often, don’t need too much maintenance, don’t 
need too much training in their use, don’t become obsolete too 
fast or too often, are profitable to the toolmaker, and preferably 
come with some guarantee, from a reliable toolmaker. Tools 
don’t share many of the characteristics of theories. Completeness 
and generality only matter to the extent that a few tools can 
economically solve many of the problems we care about. 

Thus the truth of things may be this: useful things get done 
by tools that are an amalgam of fragments of theories. Those are 
the kinds of tools whose production and maintenance expense 
can be justified. Theories are helpful to gain understanding, 
which may lead to the better design of better tools. This 
understanding is not essential; an un-analytic instinct for 
building good tools is just as useful, and often gets results faster. 

It may be a mistake to require a tool to fit the mold of any 
theory. If this be so, then we’d better be aware of when we are 
discussing theory and when we are discussing tools. 

Data models are tools. They do not contain in themselves the 
“true” structure of information. What really goes on when we 
present a data model, e.g., hierarchies, to a user? Does he say 
“Aha! Of course my information is hierarchically structured; I 
see how the model fits my data”? Of course not. He has to learn 
how to use it. We generally presume that this learning is required 
only because of the complexity of the tool. Difficulties are 
initially perceived as a failure to fully understand the theory; 
there is an expectation that perseverance will lead to a marvelous 
insight into how the theory fits the problem. In fact, much of his 
“learning” is really a struggle to contrive some way of fitting his 
problem to the tool: changing the way he thinks about his 
information, experimenting with different ways of representing 
it, and perhaps even abandoning some parts of his intended 
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application because the tool won’t handle it. Much of this 
“learning” process is really a conditioning of his perceptions, so 
that he learns to accept as fact those assumptions needed to make 
the theory work, and to ignore or reject as trivial those cases 
where the theory fails. 

Tools are generally orthogonal to the problems they solve, in 
that a given tool can be applied to a variety of problems, and a 
given problem can be solved in different ways with different 
tools. Versatility is in fact a very desirable property in a tool. It is 
useful then also to understand separately the characteristics of a 
tool and the nature of the problems to which it can be applied. 

 
12.2 Points of View 

 
A conceptual model, by its very nature, needs to be durable 

⎯ at least in form, if not content. Its content should be adjusted 
to reflect changes in the enterprise and its information needs ⎯ 
only. The form of the conceptual model ⎯ the constructs and 
terms in which it is expressed ⎯ should be as impervious as 
possible to changes in the supporting computer technology. We 
can postulate that the man-machine interface will continue to 
evolve toward man; data processing technology will move 
toward handling information in ways that are natural to the 
people who use it. It follows then that a durable conceptual 
model should be based on constructs as close as possible to the 
human way of perceiving information. 

There’s a catch right there: the implicit assumption that there 
is just one “technology” by which all people perceive 
information, and hence which is most natural and easy for 
everybody to use. There probably isn’t. Human brains 
undoubtedly function in a variety of ways. We know that some 
people do their thinking primarily in terms of visual images; 
others hear ideas being discussed in their heads; still others may 
have a different mode of intuiting concepts, neither visual nor 
aural. Analogously, some people may structure information in 
their heads in tabular form, others work best with analytic 
subdivisions leading to hierarchies, and others naturally follow 
paths in a network of relationships. 
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This may well be the root of the debates over which data 
model is best, most natural, easiest to learn and use, most 
machine independent, etc. The camps are probably divided up 
according to the way their brains function ⎯ each camp 
advocating the model that best approximates their own brain 
technology. 

 
12.3 A View of Reality 

 
“I do not know where we are going, but I do know this 
⎯ that wherever it is, we shall lose our way.” (Sagatsa) 
“If you’re confused, it just proves you’ve been paying 
attention.” (G. Kent) 
 
This book projects a philosophy that life and reality are at 

bottom amorphous, disordered, contradictory, inconsistent, non-
rational, and non-objective. Science and much of western 
philosophy have in the past presented us with the illusion that 
things are otherwise. Rational views of the universe are idealized 
models that only approximate reality. The approximations are 
useful. The models are successful often enough in predicting the 
behavior of things that they provide a useful foundation for 
science and technology. But they are ultimately only 
approximations of reality, and non-unique at that. 

This bothers many of us. We don’t want to confront the 
unreality of reality. It frightens, like the shifting ground in an 
earthquake. We are abruptly left without reference points, 
without foundations, with nothing to stand on but our 
imaginations, our ethereal self-awareness. 

So we shrug it off, shake it away as nonsense, philosophy, 
fantasy. What good is it? Maybe if we shut our eyes the notion 
will go away. 

What do we know about physical entities, about ourselves? 
Lewis Thomas tells us that a human being is not exactly a 

single discrete living thing, but more a symbiotic interaction of 
hordes of discrete living things inhabiting and motivating our 
cells. We are each an enormously divisible social structure 
[Thomas]. 
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Sociobiologists are telling us that the human being is not the 
unit of evolution and survival. It is our genes that are motivated 
to survive and perpetuate themselves. Individual people are 
merely vehicles whose survival serves that higher purpose ⎯ 
sometimes! [Time Magazine, Aug. 1, 1977.] 

Our precious self image is being challenged from another 
quarter, too. Some scientists aren’t quite so sure any more that 
they can clearly distinguish between the categories of “man” and 
“animal”. “People” might not be a well defined category! Recent 
experiments have demonstrated the capabilities of chimpanzees 
and gorillas to acquire language, concepts, symbols, 
abstractions⎯traits held by some to be the only significant 
hallmarks of the human species. A lawyer is prepared to argue 
that such animals are entitled to some of the protections accorded 
individuals under the law ⎯ such animals may be “legal 
persons”. An article in the New York Times Magazine of June 
12, 1977 observes: “If apes have access to language, can they not 
be expected to reason? And if they can reason, what distinction is 
there remaining between man and beast?” “Separately, and in 
some instances collectively, these animals have demonstrated the 
ability to converse with humans for as long as 30 minutes, to 
combine learned words in order to describe new situations or 
objects, to perceive difference and sameness, to understand ‘if-
then’ concepts, to describe their moods, to lie, to select and use 
words in syntactic order, to express desire, to anticipate future 
events, to seek signed communication with others of their 
species and, in one extraordinary sequence .... to force the truth 
from a lying human.” “... It’s a heretical question, really. I was 
brought up a good Catholic. Man is man and beast is beast. I 
don’t really think that now. You can’t spend four or five years 
with a chimp, watch it grow up, and not realize that all the going 
on in her head is pretty much the same as that going on in mine 
...” 

Which brings to mind that our vision of ourselves as 
uniquely intelligent creatures is also threatened from quite 
another quarter ⎯ the one we’ve been dealing with all along 
here. What, in some people’s view, is one of the objectives of 
artificial intelligence, if not to endow machines with an 
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intelligence competitive with humans? Is science fiction really 
mistaken in its visions of humanoids and robots functioning like, 
or better than, human beings? How often have those visionaries 
been wrong before? 

In the monthly magazine published by the American 
Museum of Natural History, we read: “Some futurists ... view the 
current difference between human and artificial intelligence as 
one of degree, not of kind, and predict that the gap between 
humans and machines will be crossed about the year 2000” 
[Jastrow]. Data processing people are fond of saying that the 
category of employees is a subset of the category of people. How 
long before we have to expand that to include animals and 
robots? I wonder if that question will really sound as foolish to 
someone reading this, say, twenty or fifty years from now. 

What does all this do to our sense of identity, to our 
egocentric view of people as entities? If we have to rebuild our 
world view so radically again (as, for example, Copernicus 
forced us to do once before), then how much faith can we have 
in the permanence of any world view? 

Our notions of reality are overwhelmingly dominated by the 
accidental configurations of our physical senses. We are very 
parochial in our sense of scale. Bacteria and viruses and sub-
atomic particles are not very real to most of us, nor are galaxies. 
We don’t really know how to comprehend them. Our concept of 
motion is bounded by the physiology of our eyes: the continental 
plates don’t move, but motion pictures (sequences of still 
pictures!) do. Most of us think of continents and islands as 
permanent and discrete entities ⎯ rather than as accidents of the 
current water level in the oceans. Are islands and mountains such 
different things? Have you ever had the opportunity to observe a 
reservoir get filled, or emptied? 

And our sense of reality is quite conditioned by the very 
narrow frequency range to which our eyes respond. Imagine if 
we couldn’t see the “visible” spectrum, but could see ultra-violet, 
or infra-red, or x-rays ⎯ or maybe sound waves! We might not 
have any notion of opaque objects; everything might be 
translucent or transparent. Things might appear to have entirely 
different shapes or boundaries. We might not have such a 



223 

primary notion of things having sharp or fixed boundaries; the 
normal mode of things might be a state of flux, like the wind or 
clouds or currents in the ocean. Think of perceiving people in 
terms of the thermal gradients around their bodies, rather than 
gradients in the visible spectrum. We might have no concept of 
day or night. Those concepts are only so “real” and 
“fundamental” because we are so dependent on visible light. 
Clumps of heat might look like “things” to us, just as clouds do 
now. We might see sounds as physical things moving through the 
air, and we might see the wind. 

Or suppose that senses other than sight dominated our world 
view. The universe of many animals ⎯ their sense of what 
things exist, and what they are ⎯ is based on smells. To them, 
the existence and nature of a thing is defined primarily by what it 
smells like. What it looks like is an occasional, trivial 
consideration (like the smell of things is to us). In a heavy fog, 
we suddenly live in a universe of things heard, rather than things 
seen. 

The shark seems to have sense organs responding directly to 
electrical phenomena. What image of reality could it have, which 
we don’t even know how to imagine? (And what view of reality 
do we have, which a blind person doesn’t even know how to 
imagine? Can you even begin to imagine how it feels to have no 
comprehension at all of what the verb “see” means?) 

To a greater or lesser extent, we all operate with somewhat 
different foundations for our perceptions of reality. Biologist 
Robert Trivers comments: “The conventional view that natural 
selection favors nervous systems that produce ever more 
accurate images of the world must be a very naive view of 
mental evolution.” [Time Magazine, Aug. 1, 1977.] Among 
many of us, the differences are trivial. Between some of us they 
are enormous. 

Compare your view of reality with that of a mathematical 
physicist, or an astronomer. (If you are one, how does it feel to 
be singled out as having a peculiar view?) The world view of 
such people includes as regular features such notions as 
Einsteinian time and space, particles of light, light being bent by 
gravity, everything accelerating away from everything else, black 
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holes, and seeing things (stars) that may have vanished 
thousands or millions of years ago. How often do these crop up 
in your world view? 

Your brain may be obliged to confess such views are real, 
but your intuition isn’t. What shall we make of it? The earth does 
look flat, after all, doesn’t it? And, no matter how much 
schooling we’ve had, we can’t seem to stop thinking of the sun 
as rising and setting. Incidentally, do your children share your 
world view of this phenomenon? 

“Consider how the world appears to any man, however wise 
and experienced in human life, who has never heard one word of 
what science has discovered about the Cosmos. To him the earth 
is flat; the sun and moon are shining objects of small size that 
pop up daily above an eastern rim, move through the upper air, 
and sink below a western edge; obviously they spend the night 
somewhere underground. The sky is an inverted bowl made of 
some blue material. The stars, tiny and rather near objects, seem 
as if they might be alive, for they ‘come out’ from the sky at 
evening like rabbits or rattlesnakes from their burrows, and slip 
back again at dawn. ‘Solar system’ has no meaning to him, and 
the concept of a ‘law of gravitation’ is quite unintelligible ⎯ 
nay, even nonsensical. For him bodies do not fall because of a 
law of gravitation, but rather ‘because there is nothing to hold 
them up’ ⎯ i.e., because he cannot imagine their doing anything 
else. He cannot conceive space without an ‘up’ and ‘down’ or 
even without an ‘east’ and ‘west’ in it. For him the blood does 
not circulate; nor does the heart pump blood; he thinks it is a 
place where love, kindness, and thoughts are kept. Cooling is not 
a removal of heat but an addition of ‘cold’; leaves are not green 
from the chemical substance chlorophyll in them, but from the 
‘greenness’ in them. It will be impossible to reason him out of 
these beliefs. He will assert them as plain, hard-headed common 
sense; which means that they satisfy him because they are 
completely adequate as a system of communication between him 
and his fellow men. That is, they are adequate linguistically to 
his social needs, and will remain so until an additional group of 
needs is felt and is worked out in language” [Whorf]. 
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So far I’ve dealt with variations in perceived reality that I 
can at least describe. They are close enough to my world view 
(and yours, I hope) that I can describe the differences in terms of 
familiar concepts. But I must acknowledge the existence of 
world views so alien to mine that I can’t even grasp the central 
concepts. These are exemplified by some of the Eastern 
philosophies, various theologies, mystical cults. The Hopi 
Indians have a world view of time and causality that can hardly 
even be expressed in our vocabulary of concepts. “I find it 
gratuitous to assume that a Hopi who knows only the Hopi 
language and the cultural ideas of his own society has the same 
notions, often supposed to be intuitions, of time and space that 
we have, and that are generally assumed to be universal. In 
particular, he has no general notion or intuition of time as a 
smooth flowing continuum in which everything in the universe 
proceeds at an equal rate, out of a future, through a present, into 
a past.” “The Hopi language and culture conceals a metaphysics, 
such as our so-called naive view of space and time does, or as 
the relativity theory does; yet it is a different metaphysics from 
either. In order to describe the structure of the universe according 
to the Hopi, it is necessary to attempt ⎯ insofar as it is possible 
⎯ to make explicit this metaphysics, properly describable only 
in the Hopi language, by means of an approximation expressed 
in our own language, somewhat inadequately it is true ....” 
[Whorf]. 

Do you and I have the “real” notion of time? What shall we 
make of contemporary physics, which wants us to believe that 
time passes at different rates for objects traveling at different 
speeds? The astronaut who has been traveling a year close to the 
speed of light has been gone from us for ten years? Or is it vice 
versa? 

 
Language has an enormous influence on our perception of 

reality. Not only does it affect how and what we think about, but 
also how we perceive things in the first place. Rather than 
serving merely as a passive vehicle for containing our thoughts, 
language has an active influence on the shape of our thoughts.  
“...language produces an organization of experience... language 
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first of all is a classification and arrangement of the stream of 
sensory experience that results in a certain world order...” 

[Whorf]. 
 
Whorf quoting Edward Sapir: “Human beings do not live in 

the objective world alone, nor alone in the world of social 
activity as ordinarily understood, but are very much at the mercy 
of the particular language that has become the medium of 
expression for their society. It is quite an illusion to imagine that 
one adjusts to reality without the use of language and that 
language is merely an incidental means of solving specific 
problems of communication or reflection. The fact of the matter 
is that the ‘real world’ is to a large extent unconsciously built up 
on the language habits of the group.... We see and hear and 
otherwise experience very largely as we do because the language 
habits of our community predispose certain choices of 
interpretation.” 

“Hopi has one noun that covers every thing or being that 
flies, with the exception of birds, which class is denoted by 
another noun.... The Hopi actually call insect, airplane, and 
aviator all by the same word, and feel no difficulty about it.... 
This class seems to us too large and inclusive, but so would our 
class ‘snow’ to an Eskimo. We have the same word for falling 
snow, snow on the ground, snow packed hard like ice, slushy 
snow, wind-driven flying snow ⎯ whatever the situation may be. 
To an Eskimo, this all-inclusive word would be almost 
unthinkable; he would say that falling snow, slushy snow, and so 
on, are sensuously and operationally different, different things to 
contend with; he uses different words for them and for other 
kinds of snow. The Aztecs go even farther than we in the 
opposite direction, with ‘cold’, ‘ice’, and ‘snow’ all represented 
by the same basic word with different terminations; ‘ice’ is the 
noun form; ‘cold’, the adjectival form; and for ‘snow’, ‘ice 
mist’.” 

We are more ready to perceive things as entities when our 
language happens to have nouns for them. For what reason does 
our language happen to have the noun “schedule” for the 
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connection between, say, a train and a time, but no such familiar 
noun for the connection between a person and his salary? 

The way we bundle relationships is similarly affected. If we 
think of the relationships “has color” and “has weight”, we might 
be inclined to lump them into a single “has” relationship, with 
several kinds of entities in the second domain. But if we happen 
to employ the word “weighs”, then that makes it easier to think 
of the second relationship as being distinct in its own right. By 
what accident of linguistic evolution do we fail to have a similar 
verb for the color phenomenon? (“Appears” might be a close 
approximation.) 

Other examples: “has salary” vs. “earns”, “has height” vs. 
what? 

The accidents of vocabulary: we are most prepared to 
identify as entities or relationships those things for which our 
vocabulary happens to contain a word. The presence of such a 
word focuses our thinking onto what then appears as a singular 
phenomenon. The absence of such a word renders the thought 
diffuse, non-specific, non-singular. 

This is all very unsatisfying. It is consistent with this 
philosophy of reality (perhaps even necessary, rather than just 
consistent), that I cannot see it applied consistently. I must accept 
paradoxes embedded right in the process of embracing such 
views. I am not, after all, such an alien creature. I see the world 
in much the same terms as you do. I have a name, and an 
employer, and a social security number, and a salary, and a birth 
date, etc. etc. There is a reasonably accurate description of me 
and my environment in several files. I have a wife, and children, 
and a car, all of which I believe to be very real. In short, I can 
share with you a very traditional view of reality; most of the 
useful activities of my daily life are predicated on such familiar 
foundations. 

Well then, what’s going on? What are these contradictions all 
about? 

I’m really not sure, but perhaps I can try to frame an answer 
in terms of purpose and scope. I am convinced, at bottom, that 
no two people have a perception of reality that is identical in 
every detail. In fact, a given person has different views at 
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different times ⎯ either trivially, because detailed facts change, 
or in a larger sense, such as the duality of my own views. 

But there is considerable overlap in all of these views. Given 
the right set of people, the differences in their views may become 
negligible. Reducing the number of people involved greatly 
enhances this likelihood. This is what I mean by “scope”: the 
number of people whose views have to be reconciled. 

In addition, there is a question of purpose. Views can be 
reconciled with different degrees of success to serve different 
purposes. By reconciliation I mean a state in which the parties 
involved have negligible differences in that portion of their 
world views that is relevant to the purpose at hand. If an 
involved party holds multiple viewpoints, he may agree to use a 
particular one to serve the purpose at hand. Or he may be 
persuaded to modify his view, to serve that purpose. 

If the purpose is to arrive at an absolute definition of truth 
and beauty, the chances of reconciliation are nil. But for the 
purposes of survival and the conduct of our daily lives (relatively 
narrow purposes), chances of reconciliation are necessarily high. 
I can buy food from the grocer, and ask a policeman to chase a 
burglar, without sharing these people’s views of truth and beauty. 
It is an inevitable outcome of natural selection that those of us 
who have survived share, within a sufficiently localized 
community, a common view of certain basic staples of life. This 
is fundamental to any kind of social interaction. 

If the purpose is to maintain the inventory records for a 
warehouse, the chances of reconciliation are again high. (How 
high? High enough to make the system workably acceptable to 
certain decision makers in management.) If the purpose is to 
consistently maintain the personnel, production, planning, sales, 
and customer data for a multi-national corporation, the chances 
of reconciliation are somewhat less: the purposes are broader, 
and there are more people’s views involved. 

So, at bottom, we come to this duality. In an absolute sense, 
there is no singular objective reality. But we can share a common 
enough view of it for most of our working purposes, so that 
reality does appear to be objective and stable. 
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But the chances of achieving such a shared view become 
poorer when we try to encompass broader purposes, and to 
involve more people. This is precisely why the question is 
becoming more relevant today: the thrust of technology is to 
foster interaction among greater numbers of people, and to 
integrate processes into monoliths serving wider and wider 
purposes. It is in this environment that discrepancies in 
fundamental assumptions will become increasingly exposed. 
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